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Abstract—The rapid expansion of Internet of Things (IoT)
devices in smart home ecosystems has significantly elevated
concerns over network security, particularly in relation to Dis-
tributed Denial-of-Service (DDoS) attacks. These threats are
intensified by the diversity in device capabilities and the limited
computational resources typical of household systems. Existing
security infrastructures, which often depend on uniform traf-
fic analysis and centralized cloud-based mitigation strategies,
fall short in addressing the unique behavioral patterns and
vulnerabilities of heterogeneous IoT environments. In response
to these challenges, this study introduces SDN-OvVR, a novel
framework that integrates Software-Defined Networking (SDN)
with One-vs-Rest (OvR) machine learning classification. Through
SDN’s centralized and programmable control capabilities, the
proposed approach dynamically identifies and profiles individual
IoT devices, such as surveillance cameras and environmental
sensors, enabling tailored anomaly detection. Device-specific Sup-
port Vector Machine (SVM) models are trained to accurately
distinguish between benign and malicious traffic, achieving a
classification accuracy of 98.7% while simultaneously lowering
false positives by 32% relative to traditional models.

The SDN-OvR framework further incorporates a real-time
mitigation engine, which leverages OpenFlow protocols to en-
force security policies with an average response latency of
13.2 milliseconds—delivering threefold performance gains over
conventional platforms like Cisco Stealthwatch. Validation of the
system was carried out using both the CICDDo0S2019 dataset
and a purpose-built smart home testbed comprising over 50
devices. Experimental results confirmed its scalability to networks
exceeding 1,000 nodes, maintaining processing overhead below
10% CPU utilization. Noteworthy contributions of this work
include the design of a novel feature engineering pipeline tailored
to extract 12 IoT-specific traffic features, an open-source release
incorporating the newly developed IoT-DDo0S-2023 dataset, and
comprehensive quality-of-service (QoS) evaluation under varying
threat conditions. By aligning intelligent traffic management with
adaptive defense strategies, the SDN-OvVR framework presents
a viable, deployable solution for enhancing DDoS resilience in
residential and small-scale enterprise IoT environments.
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I. INTRODUCTION
A. The Rise of Smart Home IloT and Its Security Implications

The rapid evolution of smart home technologies, powered
by the Internet of Things (IoT), has redefined modern living
by integrating automation in lighting, security, healthcare,
and energy systems [1]. By 2025, the smart home market is
projected to surpass $621 billion globally, with an average of
20 connected devices per household [2]. However, this surge

in adoption has been paralleled by mounting cybersecurity
concerns. IoT devices such as smart cameras, thermostats,
and voice assistants are often developed with minimal security
features, constrained by limited computational resources and
stringent cost requirements [3]. These vulnerabilities have
made them prime targets for large-scale cyberattacks, notably
Distributed Denial-of-Service (DDoS) attacks.

In 2023 alone, DDoS incidents stemming from compro-
mised IoT nodes increased by 54%, accounting for 35% of
all cyberattacks on residential infrastructures [4]. Historical
examples highlight the devastating impact of such exploits.
The Mirai Botnet (2016) utilized unsecured IP cameras to
disrupt major services like Twitter and Netflix by attacking
Dyn DNS with a peak volume of 1.2 Tbps [5]. Similarly, the
Meris Botnet in 2021 weaponized MikroTik routers to generate
over 21.8 million requests per second (RPS), overwhelming
financial networks [6]. A more recent 2023 attack on a
German smart hospital temporarily disabled patient monitoring
systems, illustrating the life-threatening consequences of IoT-
targeted DDoS attacks [7]. These events underscore the critical
need for robust, scalable, and context-aware cybersecurity
frameworks tailored specifically to IoT ecosystems.

B. Challenges in Securing Smart Home IoT Networks

Conventional security mechanisms such as firewalls and
signature-based intrusion detection systems (IDS) struggle to
address the unique challenges posed by IoT networks [8].
The first major challenge is device heterogeneity. Smart home
devices exhibit varying communication patterns—while IP
cameras stream video at 5-10 Mbps, thermostats transmit data
intermittently, and voice assistants rely on latency-sensitive
communication [9]. Uniform anomaly detection models often
misclassify legitimate traffic as malicious, yielding false pos-
itive rates exceeding 30% [10].

Secondly, resource constraints limit the deployment of
traditional security agents. Most IoT nodes operate on mi-
crocontrollers with less than 1MB RAM, precluding on-
device IDS implementation [11]. Battery-powered devices,
such as smart locks and sensors, cannot sustain continuous
monitoring without rapid energy depletion [12]. Finally, smart
home systems require real-time mitigation. Applications like
fire alarms or health monitors demand sub-50 ms latency,
but legacy solutions—often dependent on centralized cloud
infrastructures—introduce delays ranging from 100 to 200
ms [13].
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C. The Role of Software-Defined Networking (SDN)

Software-Defined Networking (SDN) offers a transforma-
tive approach to these challenges by decoupling the control
plane from the data plane, allowing programmable, centralized
network control [14]. Through SDN, aggregated traffic from
all ToT nodes can be analyzed holistically, facilitating faster
detection of anomalous behaviors [15]. Dynamic flow rule en-
forcement through protocols like OpenFlow empowers imme-
diate response to threats without hardware modification [16].
Additionally, SDN’s logical centralization ensures scalability
across multi-floor residential settings [17].

Recent frameworks such as FlowGuard have demonstrated
up to 22% false positive reduction in DDoS detection us-
ing entropy-based analysis [18], while IoT-Sentry achieved
85% accuracy using lightweight machine learning classifiers
deployed at the SDN edge [19]. However, current SDN
implementations typically adopt generalized traffic profiling,
limiting their efficacy in environments characterized by het-
erogeneous device behavior.

D. Research Objectives and Contributions

To overcome these limitations, this study presents an SDN-
based One-vs-Rest (OvR) architecture tailored for smart home
DDoS mitigation. The framework profiles IoT devices into
categories (e.g., sensors, cameras) using unsupervised cluster-
ing algorithms and identifies twelve traffic features, including
packet jitter and DNS query frequency, that are discriminative
of attack traffic [20]. Each category is assigned a dedicated
Support Vector Machine (SVM) classifier, thereby enhancing
detection accuracy while minimizing false positives.

The framework’s mitigation engine leverages OpenFlow
to block malicious flows in real-time, achieving a response
latency of just 13.2 ms with under 5% CPU overhead, even
with over 1,000 connected devices. To support future research,
this work introduces the IoT-DDoS-2023 dataset, comprising
10,000 labeled traffic traces across 15 IoT device types.
This contribution not only facilitates reproducibility but also
enables rigorous benchmarking of future security solutions.

E. Ethical and Practical Considerations

Our approach strictly adheres to privacy-preserving prin-
ciples by analyzing only traffic metadata, such as headers
and flow statistics, avoiding inspection of content payloads.
Moreover, offloading computational processing to SDN edges
results in a 60% reduction in device-side energy consumption.
All source code and datasets used in this study are publicly
released to encourage transparency, reproducibility, and further
innovation in IoT security research.

II. RELATED WORK
A. SDN-Based DDoS Detection in loT Networks

Software-Defined Networking (SDN) has emerged as a
foundational paradigm in reengineering IoT network architec-
ture, offering centralized programmability and dynamic traffic
control essential for security enforcement. Kreutz et al. [21]
outlined SDN’s core concepts, emphasizing its decoupling

of the control and data planes. This architectural flexibility
allows for fine-grained policy deployment across diverse IoT
environments.

Entropy-based mechanisms remain a common approach for
anomaly detection. FlowGuard, introduced by Wang et al. [22],
computes entropy over flow features (e.g., source IP, packet
size) to identify deviations in normal behavior. However,
encrypted payloads hinder its effectiveness, especially with
protocols such as TLS, reducing visibility into packet con-
tent [23]. Similarly, Braga et al. [24] developed a Lightweight
DDoS Detection (LDD) mechanism utilizing OpenFlow statis-
tics, though its static thresholds made it vulnerable to low-rate
stealthy attacks.

Hybrid SDN-edge systems have attempted to bridge the
performance gap. For instance, IoT-Sentry [25] employs
lightweight ML models at the edge layer to preprocess data
and relieve the central controller. Despite its efficiency, the
system suffers from a lack of device-context awareness, which
results in misclassification of bandwidth-heavy devices like 1P
cameras as malicious nodes [26].

Limitations in existing SDN-based frameworks include:
(1) uniform traffic treatment that disregards heterogeneous
IoT behavior [27], (2) blind spots in encrypted flows [28],
and (3) latency overheads from centralized mitigation, often
surpassing 50 ms [29].

B. Machine Learning for IoT DDoS Detection

The integration of machine learning (ML) into IoT intrusion
detection systems (IDS) has garnered significant attention due
to its ability to detect previously unseen attack patterns. Yan et
al. [30] demonstrated that Support Vector Machines (SVMs)
with RBF kernels achieved 92% accuracy on the Bot-IoT
dataset. Nonetheless, binary classifiers like SVM struggle with
distinguishing multi-type DDoS attacks targeting different IoT
categories.

Random Forest-based models have also proven effective.
Hussain et al. [31] reported 94% detection accuracy leveraging
packet-level statistical features. However, these models exhibit
computational inefficiencies (e.g., O(nlogn) complexity), ren-
dering them unsuitable for real-time scenarios [32].

Deep learning approaches have pushed detection accuracy
even higher. Al-Garadi et al. [33] utilized Long Short-Term
Memory (LSTM) models to capture sequential patterns in
network traffic, achieving 96% accuracy. Nevertheless, LSTM
architectures demand high computational resources and sub-
stantial labeled datasets, which are rare in the IoT domain.
CNN-based models, such as those proposed by Hodo et
al. [34], treat traffic as grayscale images, enabling spatial
pattern recognition, but they impose excessive memory con-
sumption on edge devices [35].

Despite their success, ML models for IoT-DDoS detec-
tion face three critical challenges: (1) class imbalance in
datasets [36], (2) feature redundancy due to correlated input
variables [37], and (3) non-trivial inference latency, often
exceeding real-time thresholds [38].
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C. Multi-Class Classification Strategies

Addressing the heterogeneous nature of IoT networks ne-
cessitates classification strategies that can differentiate attack
vectors per device category. One-vs-Rest (OvR) and One-vs-
One (OvO) classification have emerged as dominant solutions.

OvVR builds a separate binary classifier for each class,
distinguishing it from all other categories. Al-Garadi et al. [39]
observed that OvR-SVM models outperformed multiclass ap-
proaches on the UNSW-NBI15 dataset, reaching 97% accuracy.
In contrast, OvO methods involve training classifiers for every
pairwise class combination, leading to a complexity of O(n?)
for n classes [40]. For IoT settings with 10 or more device
types, OvO becomes computationally burdensome [41].

The OvR framework offers key advantages for IoT sce-
narios: it scales linearly, permits modular addition of new
device types, and provides intuitive interpretations of per-
device attack patterns [42].

D. Comparative Analysis of Existing Methods

Table VI summarizes leading DDoS detection systems for
IoT networks, comparing accuracy, latency, scalability, and
device-specific profiling capabilities.

Insights: Deep learning techniques, although highly ac-
curate, lack the latency efficiency required for smart home
contexts. Traditional SDN methods fail to account for the
nuanced behavior of varied IoT devices. Our SDN-OVR frame-
work addresses these challenges by combining device-level
classifiers with programmable network control, yielding both
speed and precision.

E. Research Gap

While SDN and ML have independently contributed to IoT
security, their integration remains suboptimal in the context of
heterogeneous smart homes. Prior works exhibit three critical
shortcomings:

1) Device-Agnostic Modeling: Uniform treatment of traf-
fic leads to high false positive rates when high-volume
legitimate flows (e.g., camera feeds) are mislabeled as
attacks [43].

2) Insufficient Mitigation Support: Most hybrid models
detect anomalies but lack mechanisms for real-time flow
isolation [44].

3) Non-specialized Feature Sets: Generic features like
packet count or duration overlook IoT-specific attributes
such as sleep patterns or DNS behavior [45].

To bridge these gaps, our proposed SDN-OvVR architecture
implements per-device classifiers trained on discriminative
behavioral features, employs dynamic OpenFlow rule en-
forcement for mitigation, and releases a labeled dataset for
reproducibility.

III. PROPOSED SDN-OVR FRAMEWORK

A. System Architecture

The SDN-OvR framework is a modular three-tier archi-
tecture designed to integrate Software Defined Networking

(SDN) with machine learning for intelligent DDoS detection in
heterogeneous smart home environments. Figure 1 presents the
core architectural components: the data plane, control plane,
and application plane.
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Fig. 1. System Architecture of SDN-OvR Framework. The architecture
integrates IoT endpoints, OpenFlow switches, a centralized ML-powered
controller, and a user-facing application interface.

1) Data Plane: The data plane comprises smart home IoT
devices and OpenFlow-enabled switches. These components
are responsible for traffic forwarding and duplication for
inspection.

o IoT Devices:

— Categories: Cameras (high throughput), sensors (low
frequency), and voice assistants (bi-directional).

— Protocols: MQTT (sensors), RTSP (cameras),
HTTPS (voice interfaces).

« OpenFlow Switches:

— Implements port mirroring (SPAN) to redirect copies
of traffic to the SDN controller.

— Stores and  enforces flow
OFPT_FLOW_MOD messages.

2) Control Plane: The control plane is the core intelligence
of the framework and encompasses three key modules:

rules  using

1) Traffic Analyzer: Extracts and normalizes 12 behav-
ioral and protocol features as shown in Table II.
2) OvR Classifier:

o Performs k-means clustering (k = 5) to categorize
IoT devices using Euclidean distance metrics.

e Trains one-vs-rest (OvR) Support Vector Machine
(SVM) classifiers per cluster using an RBF kernel
with parameters C = 1.0, y=0.1.

3) Mitigation Engine:

o Automatically generates OpenFlow rules to drop or
reroute malicious traffic.

o Implements QoS-aware  prioritization
set_queue actions to protect
devices (e.g., medical sensors).

using
high-priority

3) Application Plane: This layer provides user-facing mon-
itoring and analytic capabilities.
« Dashboard: Displays live traffic metrics including de-
vice behavior, heatmaps of attack origins, and bandwidth
consumption.
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TABLE I

COMPARISON OF DDOS DETECTION METHODS IN IOT ENVIRONMENTS

Method Technique Accuracy | Latency | Scalable | Device-Aware
FlowGuard [22] Entropy Analysis 89% 45 ms Low No
TIoT-Sentry [25] Random Forest 85% 22 ms Medium No
LSTM-IDS [33] LSTM Network 97% 30 ms Low No
Proposed SDN-OVR | OvR-SVM + SDN 98.7% 13.2 ms High Yes

TABLE II
FEATURE SET USED FOR SDN-OVR CLASSIFICATION
Category Feature Examples Purpose
Time-Based Packets/second, flow duration | Activity patterns
Protocol-Based | TCP/UDP ratio, DNS queries | Communication type
Behavioral Sleep cycles, payload entropy | Device-specific traits

« Logging Module: Maintains historical records of attacks
including timestamps, IPs, and protocol footprints for
forensic analysis.

B. One-vs-Rest Classification Strategy

To address the heterogeneous traffic profiles across IoT
device types, the SDN-OvVR framework employs a specialized
one-vs-rest classification technique.

1) Device Profiling:

1) Clustering: Traffic traces from 15 devices (e.g., Ring
Camera, Nest Thermostat) are clustered into 5 device
groups based on packet rate, size, and protocol diversity
using k-means.

2) Feature Selection:

o Uses ANOVA F-test (p < 0.05) to filter statistically
significant features.

o Applies Recursive Feature Elimination (RFE) to
reduce from 20 to 12 most relevant features.

2) Model Training:

« Data Preparation: SMOTE is applied to balance rare
attack categories. An 80-20 stratified split is used for
training/testing.

¢ SVM Training:

K(xi,x;) = exp(—¥[xi —x;)

« Ensemble Voting: Each SVM votes independently. The
label with the highest votes is selected:

Class = argmax(votes)

3) Inference Phase:

o Captures traffic in 1-second windows (T = Ls).

« Computes statistical and behavioral features in real-time,
e.g.,

n—1

i 1
Jitter = ] Z |tig1 —ti]

i=1
« Final classification is based on OvR SVM output (e.g.,
98% confidence for a camera stream).
C. Attack Mitigation Mechanism

The framework includes a four-step mitigation pipeline:

1) Attack Confirmation: A secondary lightweight Random
Forest model validates predictions with a confidence threshold
of > 95% to avoid false positives.

2) Traffic Rerouting: Traffic identified as legitimate is
rerouted through uncongested paths. Critical communications
are prioritized via OpenFlow’s QoS policies.

3) Forensic Logging: All confirmed attacks are logged in
an immutable database storing source IP, time, and attack
signature.

D. Threat Model and Assumptions
« Attacker Capabilities:
— Exploits default credentials in IoT devices.
— Capable of volumetric (UDP floods) and low-rate
(e.g., HTTP Slowloris) attacks.
« Defensive Assumptions:
— The SDN controller is secure and trusted.

— All IoT communications are encrypted (TLS 1.3 or
higher).

E. Scalability Analysis

The SDN-OvVR framework demonstrates high scalability
through the following strategies:
« Distributed Control: Utilizes ONOS/OpenDaylight for
multi-controller deployment.
o Model Parallelism: Each OvR classifier is executed on
an independent CPU core to reduce latency.

TABLE III
PERFORMANCE METRICS OF SDN-OVR
Metric Value
Flow Handling Capacity 10,000 flows/sec
Required Memory 8 GB
Latency Growth Linear (R?2 = 0.99) with device count

The SDN-OvR framework, through architectural modularity
and device-specific intelligence, ensures real-time, scalable,
and low-latency DDoS defense for smart homes.

I'V. PERFORMANCE EVALUATION
A. Experimental Setup

To rigorously assess the effectiveness of the proposed SDN-
OvVR framework, a hybrid evaluation strategy was employed
comprising benchmark datasets and a dedicated IoT-based
testbed. The objective was to measure detection accuracy,
response latency, and system scalability under real-world and
simulated threat conditions.

1) Dataset Preparation:
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a) CICDDoS2019: This publicly available dataset con-
tains over 80 hours of labeled network traffic, encompassing
both benign and DDoS instances. For the purposes of this
study, data was filtered to isolate IoT-relevant protocols such
as MQTT and CoAP. The classes were balanced using random
undersampling and temporal resampling techniques to prevent
classifier bias.

b) 10T-DDoS-2023 (Custom Dataset): A domain-specific
dataset was generated to capture traffic from 15 dis-
tinct IoT device categories, including smart cameras, ther-
mostats, and virtual assistants. Multiple attack vectors were
simulated—such as UDP floods, Slowloris attacks, and
ICMP-based floods—using Kali Linux tools (e.g., hping3,
S1lowHTTPTest) on a Raspberry Pi 4 cluster. The final
dataset included 10,000 samples, divided into 7,000 for train-
ing and 3,000 for testing.

2) Testbed Configuration:

a) Hardware Setup: A testbed comprising 50 Raspberry
Pi 4 units was configured to emulate smart home IoT devices.
Six Netgear GS728TP switches were employed as OpenFlow-
enabled switching units, connected to a centralized SDN
controller hosted on an Ubuntu 22.04 server equipped with
an Intel Xeon 8-core processor and 32 GB RAM.

b) Software Stack: Mininet-WiFi 2.3 facilitated the em-
ulation of the network topology. Ryu version 4.34, supporting
OpenFlow 1.5, served as the SDN controller. Machine learning
algorithms—including Support Vector Machines and Random
Forests—were implemented using Scikit-learn 1.2.2.

3) Baseline Models for Comparison:

o LSTM-IDS: A deep learning model incorporating two
LSTM layers with 128 units each.

o RF-ID: A classical Random Forest classifier with 100
trees.

« FlowGuard: An entropy-based anomaly detection system
proposed by Wang et al. (2020).

4) Evaluation Metrics:

1) Accuracy: Accuracy = —5—btIN

TPETN+FPHFN
2) Precision: Precision =

TPFP
3) Recall: Recall = TPZ%

. — 2xPrecisionxRecall
4) Fl1-Score: F1 = =5 c Recall

5) Mitigation Latency: Time elapsed from detection to
mitigation rule installation via OpenFlow.

B. Results
TABLE IV
COMPARISON OF DETECTION PERFORMANCE
Model Accuracy (%) | Precision | Recall | F1-Score
SDN-OvVR 98.7 0.98 0.97 0.975
LSTM-IDS 97.3 0.96 0.95 0.955
RF-ID 95.1 0.93 0.94 0.935
FlowGuard 89.2 0.82 0.85 0.835

1) Detection Performance: As shown in Table IV, SDN-
OVR outperforms all baseline models across all metrics.

Its superior Fl-score can be attributed to its device-aware
classification mechanism. While LSTM-IDS achieves high
accuracy, its latency constraints limit its practicality for real-
time deployment. FlowGuard, though lightweight, suffers from
a high false-positive rate due to its reliance on statistical
entropy.

80 — SDN-OWR
— LSTM-IDS

60 RF-ID

40

Latency (ms)
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Number of Devices
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Fig. 2. Mitigation Latency Across Varying Loads

2) Mitigation Latency: Figure 2 illustrates the mitigation
latency under increasing network load. SDN-OvVR consistently
maintains latency below 15 ms, significantly outperforming
LSTM-IDS and RF-ID. The primary contributor is SDN-
OvR’s lightweight inference model and direct OpenFlow in-
tegration for flow rule insertion.
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Fig. 3. CPU and Memory Usage with Scaling Device Count

3) Scalability Analysis: In scalability tests (Figure 3), the
SDN controller’s CPU usage remained under 10% even with
1,000 devices. Memory consumption scaled linearly, growing
from 1.2 GB to 4.5 GB as the number of active devices
increased. This affirms the framework’s suitability for smart
home environments comprising hundreds of interconnected
nodes.

C. False Positive Analysis

SDN-OvR demonstrated a substantial reduction in false
positives—32% lower than RF-ID and 45% lower than Flow-
Guard. In one illustrative case, a Nest Cam’s 4K stream
(15 Mbps) was flagged as malicious by RF-ID due to high
bandwidth usage. In contrast, SDN-OvR correctly identified
it as benign owing to its contextual understanding of device
behavior.

D. Case Study: Smart Home DDoS Simulation

A UDP flood attack was orchestrated using ten compro-
mised IP cameras infected with Mirai malware. The network
experienced an influx of over 500,000 packets per second.
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« Detection: SDN-OvVR flagged the anomaly within 2 sec-
onds with a confidence level of 98.5%.

« Analysis: Traffic logs revealed a sharp increase in jitter
(from 120 ms to 450 ms), indicative of DDoS activity.

« Mitigation: Flow rules were dispatched in 15 ms, isolat-
ing the infected devices.

« Recovery: Post-mitigation, the compromised cameras
were quarantined and reset using SDN policy enforce-
ment. Legitimate traffic was rerouted to maintain quality
of service (QoS).

E. Limitations

Despite promising results, certain limitations persist:

1) Encrypted Payloads: TLS and SSL protocols obscure
transport-layer features, restricting visibility into mali-
cious behaviors.

2) Zero-Day Attacks: The supervised learning approach
limits detection of novel threats not represented in
training data.

3) Hardware Dependencies: Large-scale deployments ne-
cessitate high-performance controllers, which may incur
significant costs.

F. Comparative Analysis with Commercial Solutions

Table VI highlights the advantages of SDN-OvVR in terms
of both performance and cost. Unlike commercial alternatives,
it offers a high degree of customization and is deployable in
resource-constrained environments, making it ideal for smart
home ecosystems.

V. DISCUSSION

A. Key Contributions and Implications

The SDN-OvR framework delivers a significant advance-
ment in the security of IoT environments by effectively miti-
gating Distributed Denial-of-Service (DDoS) threats. Through
a hybrid approach combining Software-Defined Networking
(SDN) programmability with One-vs-Rest (OvR) classifica-
tion, the framework demonstrates superior performance across
diverse metrics. Specifically, the architecture addresses three
pivotal challenges prevalent in IoT networks: device hetero-
geneity, real-time response constraints, and scalability. The
evaluation results, as highlighted in Section ??, underscore a
detection accuracy of 98.7% and an average mitigation latency
of 13.2 ms, surpassing established commercial systems such
as Cisco Stealthwatch and Palo Alto Cortex.

These outcomes yield the following validated implications:

« Device-Specific Profiling significantly curtails false posi-
tives by aligning detection strategies with device behavior.

« SDN Programmability enables low-latency mitigation,
crucial for time-sensitive applications, including health-
care and security.

« Open-Source Flexibility facilitates cost-effective deploy-
ment and customization, expanding access to robust se-
curity for residential and SME contexts.

B. Limitations

Despite its advantages, the SDN-OvVR framework presents
several limitations that must be addressed to ensure its appli-
cability in broader contexts.

1) Encrypted Traffic Analysis: TLS/SSL-encrypted packets
restrict the visibility of header and payload-level features,
which are often essential for precise classification. As a result,
approximately 25% of encrypted DDoS signatures eluded
detection during controlled testing, especially those based on
HTTPS flooding techniques.

Proposed Solution: Future iterations could employ
metadata-focused approaches leveraging flow-level statistics
(e.g., inter-packet arrival time, session durations) or incor-
porate privacy-preserving techniques such as homomorphic
encryption to analyze encrypted streams without decryption.

2) Zero-Day Attack Resilience: Supervised learning inher-
ently depends on labeled data. Consequently, unknown attack
vectors, such as floods exploiting the QUIC protocol, led to a
15% degradation in recall during zero-day simulations.

Mitigation Strategy: Integration of anomaly detection
models—such as autoencoders or isolation forests—alongside
OVR classification may offer robustness against novel threats.

3) Scalability Constraints: While SDN-OvR demonstrated
effective performance up to 1,000 devices, simulations show
that controller CPU utilization increases linearly, reaching
40% at 5,000 devices, which could hinder responsiveness in
enterprise-scale deployments.

Scalability Enhancement: Transitioning to a distributed
SDN paradigm using ONOS clusters or applying edge com-
puting at the fog layer can alleviate central bottlenecks.

C. Future Directions

To further enhance the SDN-OvVR framework, the following
research directions are proposed:

1) Federated Learning for Privacy Preservation: By en-
abling distributed model training without sharing raw data,
federated learning offers a privacy-compliant approach to
improve classification models across geographically diverse
smart home systems.

2) Explainable Al (XAI) Integration: The inclusion of XAI
methods such as SHAP (SHapley Additive exPlanations) can
improve model transparency, enabling stakeholders to under-
stand feature influences behind classification decisions. This
not only aids debugging but also fosters user trust.

3) 5G Network Slicing Integration: Leveraging 5G capa-
bilities, SDN policies can dynamically allocate high-priority
network slices to mission-critical devices (e.g., medical IoT),
ensuring Quality of Service (QoS) continuity during attack
scenarios.

4) Adaptive Learning for Zero-Day Detection: Hybridizing
OvR with One-Class SVMs can establish behavior baselines
for devices, enabling real-time flagging of anomalous activities
without predefined labels.
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TABLE V
COMPARISON WITH LEADING COMMERCIAL SYSTEMS
Solution Accuracy | Latency (ms) Cost Customization
Cisco Stealthwatch 92% 50 $50,000+ Limited
Palo Alto Cortex 94% 40 $80,000+ Moderate
SDN-OvVR 98.7% 13.2 Open-source Full

D. Ethical and Practical Considerations

The SDN-OvR framework is designed with adherence to

ethical standards and practical deployment factors:

« Privacy Preservation: Only metadata (packet headers
and flow statistics) is processed, ensuring sensitive pay-
load data remains untouched.

« Energy Efficiency: By shifting computational overhead
to centralized SDN controllers, the power consumption
on IoT devices is reduced by an estimated 60%.

o Low-Cost Deployment: With Raspberry Pi 4-based
controllers costing approximately $35-$75, SDN-OvR
presents a feasible option for small-scale deployments.

E. Comparative Tradeoffs

The comparison in Table VI shows that while SDN-OvR may
not yet support massive deployments beyond 10,000 devices
without architectural modifications, its advantages in cost,
accuracy, and flexibility make it highly suitable for home and
small enterprise environments.

F. Conclusion of Discussion

In summary, the SDN-OvR framework bridges several long-
standing gaps in IoT DDoS detection and mitigation. Its high
performance, cost-effectiveness, and architectural adaptability
make it a viable alternative to commercial solutions. Neverthe-
less, overcoming limitations related to encrypted traffic anal-
ysis, zero-day threats, and scalability is essential for broader
adoption. Future enhancements—particularly those involving
federated learning, explainable Al, and 5G technologies—are
expected to fortify the system’s resilience, paving the way for
secure and intelligent smart home ecosystems.

VI. CONCLUSION

The accelerated integration of Internet of Things (IoT)
devices into smart home environments has significantly el-
evated concerns regarding cybersecurity, particularly in the
context of Distributed Denial-of-Service (DDoS) threats. Ex-
isting security frameworks, primarily designed for static and
homogeneous networks, fall short in addressing the dynamic,
heterogeneous, and latency-sensitive nature of modern IoT
deployments. To bridge this gap, this study proposed the SDN-
OvR framework—a novel convergence of Software-Defined
Networking (SDN) and One-vs-Rest (OvR) machine learning
classification—to provide an intelligent, adaptive, and respon-
sive solution for IoT security.

The core innovation of the SDN-OvR architecture lies in
its ability to tailor detection and mitigation strategies to the
unique behavioral patterns of individual device categories.
By profiling traffic according to device type (e.g., cameras,

thermostats, motion sensors) and training dedicated support
vector machine (SVM) classifiers within the OvR paradigm,
the framework effectively reduced false positives by 32%. This
device-specific approach directly addresses the challenge of
heterogeneity, which is often a limiting factor in the efficacy
of generalized detection models.

Furthermore, the utilization of SDN’s centralized pro-
grammability allowed the system to deploy mitigation poli-
cies dynamically through OpenFlow-based rule injection. This
mechanism enabled response times as low as 13.2 ms, out-
performing recurrent neural network-based approaches by a
factor of three, while preserving the quality of service (QoS)
for mission-critical applications such as health monitoring and
home automation.

In terms of scalability, SDN-OvR demonstrated its robust-
ness in emulated smart home scenarios, managing over 1,000
concurrently active devices with less than 10% controller
CPU utilization. This confirms the framework’s suitability
for real-world residential and small enterprise environments
without necessitating high-end infrastructure. Additionally, the
open-source release of the IoT-DDoS-2023 dataset and the
complete implementation code contributes to reproducibility,
transparency, and collaborative advancement within the re-
search community.

When benchmarked against leading commercial solutions,
including Cisco Stealthwatch and Palo Alto Cortex, the pro-
posed framework exhibited superior performance in key di-
mensions—achieving 98.7% detection accuracy, maintaining a
13.2 ms mitigation latency, and incurring minimal deployment
cost due to its open-source nature.

In conclusion, the SDN-OvR framework offers a robust,
efficient, and scalable defense mechanism tailored to the com-
plex demands of smart home IoT ecosystems. By integrating
programmable network control with intelligent, device-specific
threat classification, this work presents a compelling blueprint
for the next generation of IoT security infrastructures. Future
extensions may incorporate federated learning, encrypted traf-
fic analysis, and adaptive anomaly detection, further enhancing
the system’s resilience against evolving threat landscapes.

VII. FUTURE WORK

Although the SDN-OvR framework has demonstrated
promising results in addressing key challenges in IoT secu-
rity, there remain several avenues for further enhancement to
strengthen its resilience, scalability, and practical deployment.
Future research may focus on incorporating privacy-preserving
learning techniques such as federated learning, which enables
decentralized model training across multiple smart homes
without transferring raw user data. This approach not only
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TABLE VI
COMPARISON OF SDN-OVR WITH COMMERCIAL SOLUTIONS

Aspect SDN-OvVR Cisco Stealthwatch | Palo Alto Cortex
Accuracy 98.7% 92% 94%
Latency 13.2 ms 50 ms 40 ms

Cost Open-source $50,000+ $80,000+
Customization | Full (device-specific) Limited Moderate

mitigates privacy concerns but also enhances data diversity
and generalization of the classifiers.

The emergence of 5G network slicing offers a powerful
mechanism to guarantee quality-of-service (QoS) during cy-
berattacks. By integrating this capability with SDN policies, it
becomes possible to dynamically allocate dedicated bandwidth
slices to critical devices such as medical sensors and emer-
gency systems, thereby ensuring uninterrupted service under
network stress.

To improve transparency and accountability in classifica-
tion decisions, the incorporation of Explainable Al (XAl)
methods—such as SHAP (SHapley Additive exPlanations)
and LIME (Local Interpretable Model-agnostic Explana-
tions)—can be explored. These techniques can help interpret
the rationale behind OvR-based predictions, thereby building
trust among users and facilitating compliance with data gov-
ernance regulations.

Addressing the challenge of zero-day attack detection,
which remains a significant limitation of supervised learning
models, future versions of the framework could integrate
unsupervised anomaly detection algorithms. Methods such as
autoencoders or one-class SVMs may provide the necessary
flexibility to detect previously unseen attack vectors by iden-
tifying deviations from baseline device behavior.

In terms of performance optimization, the deployment of
hardware-accelerated solutions, such as FPGA or ASIC-based
flow rule engines, holds promise for achieving mitigation
latencies below 5 ms in large-scale environments. These
accelerators can significantly enhance the throughput and
responsiveness of SDN controllers, particularly in industrial
IoT or smart city infrastructures that may include tens of
thousands of connected devices.

Finally, the integration of Edge-SDN architectures using
lightweight TinyML models for local feature extraction can
decentralize computational tasks, thereby reducing the con-
troller workload by up to 50%. Such distributed intelligence
would support more efficient resource utilization and improve
the framework’s responsiveness in real-time applications.

Collectively, these directions not only address existing con-
straints such as encrypted traffic inspection and hardware
scalability but also broaden the framework’s applicability to
more demanding domains, including industrial IoT and urban-
scale smart environments.
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