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Abstract—The advent of smart electric drivetrains in modern
transportation systems, particularly in the railway and auto-
motive sectors, has led to a critical demand for robust health
monitoring solutions. Ensuring operational reliability, minimizing
downtime, and extending the service life of drivetrain components
such as electric motors, inverters, gearboxes, and batteries are
pivotal for system efficiency and safety. Artificial Intelligence (AI)
has emerged as a transformative approach in predictive main-
tenance by enabling early fault detection, remaining useful life
(RUL) prediction, and condition classification through intelligent
data analysis. This paper presents a comprehensive comparative
study of various AI algorithms deployed for health monitoring of
smart electric drivetrain components. Both traditional machine
learning techniques—such as Support Vector Machines (SVM),
Random Forests, and k-Nearest Neighbors (k-NN)—and modern
deep learning architectures—such as Convolutional Neural Net-
works (CNN), Long Short-Term Memory (LSTM) networks, and
hybrid models—are critically reviewed. The performance of these
algorithms is assessed based on key evaluation parameters includ-
ing accuracy, computational complexity, real-time applicability,
data dependency, and adaptability to non-stationary conditions.
By synthesizing findings from diverse application domains, this
study highlights the strengths and limitations of each algorithm
in practical deployments. Furthermore, open challenges, such
as dataset scarcity, sensor noise, and model interpretability, are
discussed, along with potential directions for future research.
The insights provided aim to guide researchers and engineers in
selecting appropriate Al strategies for effective drivetrain health
management.

Keywords—Artificial Intelligence, Smart Electric Drivetrain,
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I. INTRODUCTION

The rapid evolution of transportation systems, particularly
in the railway sector, has led to significant advancements in
electric drivetrains. These drivetrains, integral to the function-
ing of modern electric locomotives and trains, are pivotal for
achieving energy efficiency and sustainability in transportation
systems. With the growing reliance on these systems, ensuring
their operational reliability and minimizing unplanned down-
times has become a critical challenge for the transportation in-
dustry. In this context, smart electric drivetrains have emerged
as an essential component of future transportation systems,
offering both high performance and adaptability [1], [2].

Condition-based maintenance (CBM) is a preventive ap-
proach that ensures the continued reliability of such systems.
Unlike traditional maintenance strategies, which follow fixed
schedules, CBM utilizes real-time data from sensors embedded
within drivetrain components to monitor their health and

predict potential failures [3]. This approach allows for the
optimization of maintenance activities, reducing operational
costs and enhancing the safety of transportation systems [4],
[5].

In recent years, Artificial Intelligence (AI) has become
a driving force in predictive maintenance applications [6].
Machine learning (ML) and deep learning (DL) techniques,
in particular, have shown immense potential in analyzing
vast datasets generated by drivetrain sensors, enabling the
accurate prediction of faults before they occur. These Al-
driven solutions can improve the accuracy of fault detection,
enhance system longevity, and facilitate smarter decision-
making processes in maintenance scheduling [7], [21].

Despite the promising capabilities of Al algorithms in this
domain, there is a significant gap in understanding their com-
parative performance when applied to the health monitoring of
smart electric drivetrains. Existing studies often focus on spe-
cific algorithms or systems, and comprehensive comparative
analyses are scarce. This research aims to bridge this gap by
conducting a comparative study of various Al algorithms used
for health monitoring in electric drivetrains, specifically in the
context of railways. This review will explore the strengths and
weaknesses of different Al models in terms of their predictive
accuracy, computational efficiency, and applicability to real-
world scenarios [9], [10].

The primary objectives of this paper are as follows: (i)
to review the state-of-the-art AI algorithms employed in
health monitoring and predictive maintenance of smart electric
drivetrains, (ii) to compare these algorithms in terms of
performance metrics such as accuracy, precision, and recall,
(iii) to evaluate the practical implications of their deployment
in railway systems, and (iv) to identify the challenges and
opportunities associated with their integration into existing
railway infrastructure. The scope of this review encompasses a
wide range of Al techniques, from traditional machine learning
algorithms like support vector machines and decision trees
to more advanced deep learning models, including convolu-
tional neural networks (CNNSs) and recurrent neural networks
(RNNs) [11], [12].

This paper is structured as follows: Section II reviews
the background and theoretical concepts related to Al-driven
predictive maintenance. Section III explores the various Al
algorithms applied to drivetrain health monitoring. Section IV
presents the comparative study of these algorithms, followed
by a discussion of their practical implementation and chal-
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Fig. 1. Schematic of a smart electric drivetrain system in railway transporta-
tion.
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TABLE I
COMPARISON OF Al ALGORITHMS FOR HEALTH MONITORING IN SMART
ELECTRIC DRIVETRAINS.

Algorithm Accuracy | Efficiency | Scalability
Support Vector Machine High Moderate Low

Random Forest Moderate High Moderate
Deep Neural Networks Very High Low High

lenges. Finally, Section V concludes the paper with insights
into future research directions and potential improvements in
Al-based health monitoring systems.

II. LITERATURE REVIEW
A. Overview of Existing Work in Al-Based Health Monitoring

The integration of Artificial Intelligence (AI) into health
monitoring systems has garnered significant attention in recent

years. Al techniques, particularly machine learning (ML) and
deep learning (DL), have been effectively applied to predict
faults and monitor the health of various systems, including
electric drivetrains in transportation. Early works focused
on traditional fault detection methods, relying on rule-based
systems and expert knowledge. However, with the advance-
ment of Al, particularly through data-driven models, there has
been a paradigm shift towards more sophisticated, automated
approaches that enable real-time diagnostics and predictive
maintenance [13], [14].

Recent studies have demonstrated that Al can significantly
improve the accuracy and efficiency of health monitoring
systems by processing large datasets from sensors and other
sources. ML algorithms, such as support vector machines
(SVMs), random forests, and neural networks, are widely
utilized for fault detection and prediction [15], [16]. The
use of deep learning methods, especially convolutional neural
networks (CNNSs) and recurrent neural networks (RNNs), has
also proven to be effective for complex pattern recognition
in the time-series data generated by smart electric drivetrain
components [17], [18].

B. Past Applications in Electric Drivetrain Systems

The application of Al to electric drivetrain systems has been
explored in several studies, particularly for health monitoring
of motors, inverters, batteries, and gearboxes. Electric motors
are one of the most critical components in electric drivetrains,
and their failure can lead to significant downtimes. Al-based
systems have been successfully employed to monitor motor
performance by analyzing vibration signals, temperature, and
other operational parameters [19], [20].

Similarly, inverters, which convert DC to AC in electric
drivetrains, are also susceptible to faults, and early detection
is crucial. Al algorithms have been applied to monitor inverter
efficiency and predict failure modes such as overvoltage or
overheating [21]. Moreover, batteries, which are essential
in electric drivetrains, require constant monitoring to ensure
their health and longevity. Al techniques have been used to
predict battery lifespan, optimize charging cycles, and detect
anomalies in voltage and temperature [22], [23].

Gearboxes, which transmit power from the motor to the
wheels, have also been a focus of Al-based health monitoring
research. Vibration analysis, coupled with machine learning
models, has been a common method for gearbox fault diag-
nosis [24], [45].

C. Survey of Sensors and Data Acquisition Systems Used for
Condition Monitoring

Condition monitoring in electric drivetrains relies heavily on
sensors and data acquisition systems. Various types of sensors,
including temperature, vibration, pressure, and current sensors,
are used to monitor the health of drivetrain components. Vi-
bration sensors are particularly useful for detecting mechanical
faults in motors and gearboxes, while temperature sensors are
used to monitor the thermal condition of batteries and inverters
[26], [27].
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Data acquisition systems play a critical role in collecting,
processing, and transmitting sensor data for analysis. These
systems often use advanced signal processing techniques, such
as Fourier transforms and wavelet analysis, to extract relevant
features from the raw sensor data [28], [29]. Machine learning
algorithms then analyze these features to detect anomalies or
predict potential failures in drivetrain components [30], [31].

D. Summary of Existing Datasets or Simulation Frameworks

Several datasets and simulation frameworks have been de-
veloped to support Al-based health monitoring research in
electric drivetrains. These datasets typically include time-series
sensor data collected from electric motor, inverter, battery,
and gearbox systems under various operating conditions. The
Paderborn Gearbox Dataset, for example, provides data for
fault detection in gearboxes [32]. Similarly, the IEEE PHM
Challenge dataset has been widely used for predictive main-
tenance research, including electric drivetrain systems [33].

Simulation frameworks are also employed to create syn-
thetic data for training Al models. The MATLAB/Simulink
platform, for instance, is commonly used to simulate the
behavior of electric drivetrains and generate datasets for health
monitoring applications [34], [35].

E. Research Gaps Identified in the Current Literature

While significant advancements have been made in Al-
based health monitoring systems, there are several research
gaps that remain. One key gap is the lack of large, publicly
available datasets that capture a wide range of fault types in
electric drivetrain systems. Many existing datasets are either
limited in scope or do not cover all critical components,
such as batteries and gearboxes [36], [37]. Additionally, most
studies focus on individual components, and there is limited
research on the integration of Al models for multi-component
monitoring in an electric drivetrain [38], [39].

Another gap lies in the interpretability of Al models. Many
deep learning algorithms, while highly effective, operate as
black-box models, making it difficult to understand how
predictions are made. This lack of transparency limits the
practical implementation of Al-based health monitoring sys-
tems in critical transportation infrastructure [7], [?]. Research
into explainable AI for condition monitoring is therefore an
essential area for future investigation.

IITI. ARTIFICIAL INTELLIGENCE TECHNIQUES FOR HEALTH
MONITORING

A. Categorization of Algorithms

The integration of Artificial Intelligence (AI) in health
monitoring systems, especially in electric drivetrains, involves
several machine learning (ML) and deep learning (DL) algo-
rithms. These algorithms can be categorized into four major
types: Traditional Machine Learning (ML), Deep Learning
(DL), Hybrid Models, and Emerging Methods. Each category
has unique characteristics suited to different health monitoring
tasks such as classification, anomaly detection, and Remaining
Useful Life (RUL) prediction. In this section, we provide an

overview of the key algorithms in each category, along with
their principles and suitability for specific applications.

1) Traditional Machine Learning Algorithms: Support
Vector Machines (SVM): SVM is a supervised learning
algorithm commonly used for classification tasks. It works by
finding the optimal hyperplane that separates different classes
in a high-dimensional space. In health monitoring, SVM is
often applied to classify normal and faulty conditions based
on sensor data [40], [41]. SVMs are particularly suitable for
anomaly detection due to their ability to generalize well to
unseen data.

Decision Trees (DT): Decision trees are a simple, inter-
pretable algorithm used for both classification and regression
tasks. In health monitoring, decision trees can be used to
model the relationship between sensor measurements and
system health states [42]. Their transparent nature makes them
useful for understanding decision-making processes in fault
detection.

Random Forest (RF): Random forests are ensembles of
decision trees that improve prediction accuracy by averaging
the predictions of individual trees. RFs are commonly used in
health monitoring to handle high-dimensional data and reduce
overfitting, making them suitable for both classification and
regression tasks [43], [44].

k-Nearest Neighbors (k-NN): k-NN is a non-parametric
method that classifies data based on the majority class of
its nearest neighbors. k-NN is simple to implement and
effective for classification tasks, particularly when the decision
boundary is highly nonlinear. It is suitable for real-time fault
detection in systems where similar patterns indicate anomalies
[45], [46].

Naive Bayes (NB): Naive Bayes is a probabilistic classifier
based on Bayes’ theorem, assuming independence between
features. This algorithm is fast, efficient, and often used in
health monitoring applications for tasks like fault detection and
condition classification, especially when the dataset is small
[47], [48].

2) Deep Learning Algorithms: Convolutional Neural Net-
works (CNN): CNNs are widely used in deep learning for
processing grid-like data, such as images or time-series data. In
health monitoring, CNNs are particularly effective in extract-
ing spatial and temporal features from sensor data for fault
detection and classification tasks [49], [50]. Their ability to
automatically learn hierarchical features makes them powerful
for complex pattern recognition.

Long Short-Term Memory (LSTM): LSTM networks are
a type of recurrent neural network (RNN) designed to model
sequential data. LSTMs are ideal for time-series prediction
tasks, such as remaining useful life (RUL) prediction, where
the model needs to remember long-term dependencies in
sensor data [51], [52].

Gated Recurrent Units (GRU): GRUs are a variant of
LSTM that use fewer gates and are computationally more
efficient. GRUs have shown promising results in health moni-
toring, particularly for tasks like anomaly detection and RUL
prediction, where sequential data is essential [53], [54].

@ nttps://jsiar.com
¥ editor@isiar.com

© 2025 JSIAR



Journal of Scientific Innovation and Advanced Research (JSIAR) 2025

Fault Detection &
Classification

AI Model
(CNN, LSTM, SVM, GNN)

Remaining Useful Life
Estimation (RUL)

1

Decision Support System
(Maintenance Alerts, Logs)

Sensor Data
(Vibration, Temperature,
Current, Voltage)

Data Preprocessing
(Filtering, Normalization)

Feature Engineering

—|

(STFT, FFT, Statistical) [®----————______

Model Retraining

T
Cloud Storage
-----------" (Historical Data, Logs)

Fig. 2. Al-based health monitoring framework for electric drivetrain systems.

TABLE II
SUMMARY OF Al APPLICATIONS IN ELECTRIC DRIVETRAIN HEALTH MONITORING.
Component | AI Application Methodology
Motor Fault detection Vibration analysis with SVM
Inverter Fault prediction Decision trees and neural networks
Battery Life prediction | Deep learning for time-series forecasting
Gearbox Fault diagnosis Vibration analysis with CNN

Autoencoders (AE): Autoencoders are unsupervised neural
networks that learn to compress data into a lower-dimensional
representation and then reconstruct it. In health monitoring,
autoencoders are typically used for anomaly detection, as they
can identify unusual patterns in sensor data by comparing
reconstructed data to actual observations [55], [56].

3) Hybrid Models: Ensemble Methods: Ensemble learning
combines multiple models to improve prediction accuracy.
Techniques like bagging, boosting, and stacking are used to
build stronger models by leveraging the diversity of weak
learners. In health monitoring, ensemble methods, such as
random forests and gradient boosting machines, are used for
classification, anomaly detection, and fault diagnosis tasks
[571, [58].

Deep Learning + Statistical Approaches: Combining deep
learning with traditional statistical models (e.g., ARIMA,
Kalman filters) can enhance the robustness of health mon-
itoring systems. This hybrid approach is particularly useful
for time-series forecasting and fault prediction in electric
drivetrain systems, where the combination of deep feature
learning and statistical modeling can improve accuracy and
interpretability [59], [60].

4) Emerging Methods: Graph Neural Networks (GNNs):
GNNs are a class of neural networks designed to work with
graph-structured data. In health monitoring, GNNs can be
applied to model the relationships between different compo-
nents of a system (e.g., motors, inverters, and batteries in an
electric drivetrain). They are particularly useful for identifying
dependencies between system components and for diagnosing
faults in complex systems [61], [62].

Transformers: Originally developed for natural language
processing tasks, transformers are now being explored for
time-series forecasting and anomaly detection in health moni-
toring. Transformers can model long-range dependencies and
handle variable-length sequences, making them suitable for
RUL prediction in electric drivetrain systems [78], [64].

Reinforcement Learning (RL): RL involves training agents
to make decisions by interacting with an environment. In
health monitoring, RL can be applied to optimize predictive

maintenance schedules and decision-making processes based
on system health [65], [70].

IV. EVALUATION PARAMETERS FOR COMPARATIVE
ANALYSIS

Evaluating the performance and applicability of Artificial
Intelligence (AI) algorithms for health monitoring of smart
electric drivetrain components requires a multidimensional
analysis framework. This section outlines the core parameters
used to compare these techniques, encompassing both techni-
cal efficiency and practical deployment readiness.

A. Performance Metrics

Fundamental metrics such as accuracy, precision, recall,
Fl-score, and AUC-ROC are widely used to evaluate the
classification and prediction abilities of Al models [67], [68].

o Accuracy measures the proportion of correct predictions
over the total predictions made.

« Precision focuses on the ratio of true positives to the sum
of true and false positives.

« Recall evaluates the model’s ability to identify all relevant
instances.

« Fl-score offers a harmonic mean of precision and recall,
beneficial in imbalanced datasets [69].

o AUC-ROC illustrates the model’s capability to distin-
guish between classes, critical in anomaly detection sce-
narios [70].

B. Time Efficiency

Time efficiency is another critical metric, especially for
real-time or near-real-time fault diagnosis. Training time and
inference speed dictate whether the model is practical for
on-board processing in railway systems [71], [72]. While
traditional ML algorithms like SVM or Decision Trees offer
faster inference, DL-based techniques such as CNNs and
LSTMs require optimized deployment to achieve comparable
latency [73], [67].
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Fig. 3. Categorization of Al algorithms for health monitoring.

TABLE III
SUITABILITY OF Al ALGORITHMS FOR HEALTH MONITORING TASKS.
Algorithm Task Suitability Application
SVM Classification High Fault detection
Decision Trees Classification High Fault detection, health classification
Random Forest Classification, Regression High Fault detection, anomaly detection
k-NN Classification Moderate Real-time anomaly detection
Naive Bayes Classification Low to Moderate Fault detection
CNN Classification, Feature extraction High Anomaly detection, fault diagnosis
LSTM Time-series prediction High RUL prediction, anomaly detection
GRU Time-series prediction Moderate to High Anomaly detection, RUL prediction
Autoencoders Anomaly detection High Fault detection
Ensemble Methods Classification, Regression High Fault diagnosis
Hybrid Models Classification, Regression High Time-series forecasting, RUL prediction
GNNs Fault diagnosis High Multi-component system monitoring
Transformers Time-series prediction High Anomaly detection, RUL prediction
Reinforcement Learning Decision making, Scheduling Moderate Maintenance scheduling

onitoring
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Fig. 4. Comparison of Key Performance Metrics in Health Monitoring Tasks

C. Computational Cost and Model Complexity

The computational overhead of Al models impacts their fea-
sibility for embedded system deployment. Model complexity,
often characterized by the number of parameters and layers,
influences energy consumption and memory footprint [74],
[75]. Resource-constrained environments necessitate a trade-
off between performance and complexity, favoring lightweight
architectures or model pruning techniques [76], [77].

D. Data Dependency and Robustness

Al models differ in their dependence on large labeled
datasets. Deep learning models such as LSTMs and Trans-
formers exhibit high data requirements and are prone to over-
fitting when trained on limited samples [78], [79]. Conversely,
ensemble methods and hybrid models enhance robustness by
integrating domain knowledge and diverse feature sets [80],
[81]. Techniques like transfer learning and data augmentation
help mitigate data scarcity issues [82], [83].

E. Scalability and Deployment Readiness

Scalability refers to the adaptability of Al models across
different platforms and load conditions. Deployment readiness
encapsulates factors like compatibility with edge devices, ease

TABLE IV
DATA DEPENDENCY AND ROBUSTNESS OF VARIOUS Al MODELS

Model Type Data Need | Robustness

SVM Low Medium

CNN High High

LSTM High Medium

Ensemble Methods Medium High

GNN Medium High

of integration with existing hardware, and model retraining
needs [84], [85]. Transformer-based models, although accu-
rate, often face limitations in scalability due to their size
and hardware demands [86]. Efficient deployment pipelines
using ONNX or TensorRT can enhance the deployment of DL
models in smart railway systems [87], [88], [89].

These comprehensive evaluation metrics enable an informed
comparison of Al algorithms tailored for the health monitoring
of electric drivetrain components, ensuring both theoretical
soundness and practical viability.

V. COMPARATIVE ANALYSIS AND DISCUSSION

The integration of Artificial Intelligence (Al) into the health
monitoring of smart electric drivetrain components has seen
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a wide array of implementations. In this section, a detailed
comparative analysis of Al algorithms is presented, with em-
phasis on their performance across key drivetrain subsystems
such as motors, inverters, gearboxes, and batteries.

A. Comparative Table of Al Techniques

Table ?? provides a summarized evaluation of popular Al
techniques used in different components of smart electric
drivetrains. The evaluation considers accuracy, time efficiency,
interpretability, and application relevance.

B. Use Case Highlights

Al models have demonstrated significant performance
across a range of drivetrain applications:

« Motor Degradation: CNN and Transformer models
achieved over 95% accuracy in early fault detection, with
CNN performing well on image-based vibration data.

« Inverter Faults: LSTM networks provided robust tempo-
ral prediction capabilities, especially when input signals
included phase currents and temperatures.

o Gearbox Wear: GRUs and Random Forests showed
notable accuracy in classifying tooth wear and lubrication
issues.

o Battery Health: Ensemble models combining decision
trees and neural networks improved the prediction of
remaining useful life.

C. Implementation Challenges

Real-world deployment introduces numerous complications:
1) Sensor Noise: Data from vibration, current, and ther-
mal sensors is often corrupted, requiring preprocessing
techniques.
2) Missing Data: Incomplete time-series streams can affect
the performance of sequence-based models like LSTM.
Edge Deployment: Deep models with large compu-
tational footprints (e.g., CNNs, Transformers) require
optimization for real-time, on-device inference.

D. Trade-offs Among Models

Each Al technique offers trade-offs:

e Accuracy vs Interpretability: Deep learning models
such as CNNs and Transformers provide high accuracy
but are less interpretable. Decision trees and SVMs, while
slightly less accurate, allow easier fault reasoning.

¢ Training Time vs Efficiency: Traditional ML models
like k-NN and Naive Bayes train quickly but may not
generalize well to unseen conditions, while deep models
excel at generalization but require extensive computation.

« Robustness vs Complexity: Hybrid and ensemble mod-
els offer robustness but are often complex to deploy and
maintain.

This analysis underlines the need for application-specific se-
lection and optimization of Al algorithms for efficient and
reliable health monitoring in smart electric drivetrains.

3)

VI. OPEN CHALLENGES AND FUTURE RESEARCH
DIRECTIONS

The integration of Artificial Intelligence (Al) into the health
monitoring of smart electric drivetrain systems has demon-
strated promising advancements in predictive maintenance and
fault diagnostics. However, several pressing challenges con-
tinue to limit its widespread application and reliability in real-
world railway systems. This section outlines these challenges
and highlights the directions in which future research should
be steered.

A. Lack of Open Benchmark Datasets

Despite the proliferation of Al-based health monitoring
research, there remains a noticeable absence of publicly avail-
able, standardized benchmark datasets for drivetrain compo-
nents such as motors, inverters, gearboxes, and batteries. This
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lack hinders model validation, reproducibility, and perfor-
mance comparison across studies. The development of such
datasets, with labeled fault modes and operating conditions,
would greatly support the Al research community.

B. Real-time and Embedded Al Models

Real-world deployment of AI models in smart drivetrains re-
quires lightweight, real-time inference on embedded systems.
Existing models, particularly deep learning architectures, often
involve high computational overhead and latency, making
them impractical for on-board railway systems. Research into
quantization, pruning, and edge Al accelerators is necessary
to bridge this gap.

C. Integration with Digital Twin Systems

Digital Twin technology, which creates real-time digital
replicas of physical assets, holds the potential to enhance pre-
dictive analytics and anomaly detection. Integrating Al-driven
health monitoring into such frameworks enables continuous
learning and bidirectional feedback. However, the complexity
of synchronizing simulation models, real-time sensor data, and
Al logic poses a significant implementation challenge.

TABLE VI
RESEARCH PRIORITIES IN AI-DRIVEN DRIVETRAIN MONITORING

Future Direction

Public release of annotated drive-
train fault datasets

Edge computing and model com-
pression techniques
Standardized protocols
simulation frameworks
Robust sensor synchronization and
data preprocessing

Al for anomaly detection in
telemetry and sensor networks

Research Focus
Open Datasets

Real-time Inference
Digital Twin Integration and co-

Multi-Sensor Fusion

Cybersecurity

D. Multi-modal and Multi-sensor Data Fusion

Effective health monitoring often requires fusing data from
multiple sensor types (e.g., vibration, temperature, voltage,
current). Handling heterogeneity in sensor sampling rates, data
volumes, and synchronization remains a challenge. Advanced
fusion techniques leveraging attention mechanisms, Kalman
filters, or graph-based representations could provide more
holistic and robust diagnostics.

E. Cybersecurity and Data Integrity

As Al-driven diagnostics rely heavily on sensor data and
remote connectivity, ensuring cybersecurity and data integrity
becomes paramount. Sensor spoofing, data injection attacks,
or compromised edge nodes could lead to false diagnostics
or system malfunctions. Incorporating blockchain, encrypted
telemetry, and Al-based anomaly detection are promising
strategies for securing the health monitoring pipeline.

E Summary and Outlook

In summary, addressing these open challenges is crucial for
the reliable deployment of Al in drivetrain monitoring. Future
research should prioritize open collaboration for datasets,
energy-efficient algorithms, secure communication protocols,
and co-simulation environments to enable more intelligent,
scalable, and trustworthy condition monitoring solutions.

VII. CONCLUSION

The advent of Artificial Intelligence (AI) in the domain
of smart electric drivetrain systems, especially within railway
transportation, represents a transformative leap toward intel-
ligent condition monitoring and predictive maintenance. This
paper presented a comprehensive comparative study of various
Al algorithms tailored for the health monitoring of critical
drivetrain components such as motors, inverters, batteries, and
gearboxes.

Through a systematic categorization, we analyzed tradi-
tional machine learning algorithms (e.g., SVM, Decision
Trees, k-NN), deep learning models (e.g., CNN, LSTM, GRU,
Autoencoders), hybrid techniques, and emerging paradigms
including Graph Neural Networks (GNNs) and Transformers.
Our comparative evaluation (as shown in Table VII) assessed
these algorithms on key performance indicators such as ac-
curacy, time efficiency, scalability, and robustness to data
imperfections.

From the comparative analysis, deep learning models like
LSTM and CNN exhibited superior performance in sequen-
tial fault detection and degradation trend modeling. Tradi-
tional methods, while computationally efficient, often under-
performed in complex or noisy data environments. Hybrid
and emerging Al models offer great potential, especially
when integrated with multi-sensor data streams and embedded
platforms.

However, several practical challenges persist. These include
the lack of open datasets, the need for lightweight ATl models
suitable for edge deployment, and robust cybersecurity for
sensor-driven diagnostics. Addressing these limitations will be
pivotal to achieving reliable and scalable implementations in
the railway sector.

Looking forward, the fusion of Al with Digital Twin tech-
nologies, real-time sensor analytics, and secure data frame-
works presents a promising path. Al will continue to play
a pivotal role not only in fault detection but also in au-
tonomous decision-making and lifecycle optimization of driv-
etrain systems. The evolution of smart maintenance archi-
tectures—enabled by Al—can significantly improve safety,
operational reliability, and cost-effectiveness in future railway
transportation.
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