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Abstract—In time-sensitive embedded systems, precise and
persistent timekeeping is essential for ensuring deterministic
behavior, especially in applications such as industrial automation,
smart monitoring, and data logging. This research investigates
the integration and role of Real-Time Clock (RTC) subsystems
within the BeagleBone Black (BBB) platform, a popular ARM-
based development board for embedded Linux applications. The
primary objective of this study is to evaluate the operational
efficiency and system-level impact of RTC modules—both on-
board and externally interfaced—on maintaining accurate time
in various operational scenarios, including power outages, system
reboots, and alarm-triggered events.

To achieve this, a high-precision external RTC (DS3231) was
interfaced with the BBB via the I2C protocol. A custom Linux
kernel driver was designed and integrated into the existing RTC
subsystem, enabling low-level communication with the hardware
and providing user-space access through standard interfaces.
The methodology included device tree configuration, I2C bus
initialization, interrupt handling for alarm functionality, and
rigorous testing under different power and operational states.

The experimental results demonstrate that the external RTC
significantly enhances timekeeping reliability and minimizes drift
compared to the onboard RTC. Additionally, the system’s ability
to maintain time across power failures and trigger scheduled
tasks validates the critical role of RTC in enabling deterministic
system responses. The research offers valuable insights into em-
bedded time synchronization strategies and serves as a practical
reference for implementing RTC-based functionalities in Linux-
based embedded platforms. These findings contribute toward
developing robust, fault-tolerant embedded systems with reliable
temporal accuracy.

Keywords—BeagleBone Black, RTC, Linux Device Driver,
Timekeeping, Embedded Systems, I²C.

I. INTRODUCTION

Embedded systems are at the core of modern automation,
powering applications ranging from consumer electronics to
industrial control, automotive systems, and Internet of Things
(IoT) infrastructures [1], [2]. A key requirement in many
embedded domains is the ability to accurately maintain and
manage time, even during periods of inactivity or power loss.
Real-Time Clock (RTC) modules, either onboard or externally
interfaced, fulfill this requirement by providing persistent and
accurate timekeeping [24]. This becomes especially critical in
systems involving time-stamped logging, scheduled automa-
tion, time synchronization in networks, or alarms for triggering
wake-up events [27], [26].

The BeagleBone Black (BBB) is an open-source, ARM
Cortex-A8-based development platform known for its ver-
satility, GPIO-rich interface, and Linux support, making it

ideal for educational and industrial embedded projects [6].
Despite its hardware capabilities, the onboard RTC in BBB
is typically volatile, requiring an external RTC module with
battery backup to ensure reliable timekeeping [43], [42].
Interfacing RTCs such as the DS3231 or PCF8563 over I2C
provides an affordable and precise solution to this limitation
[28], [29].

Accurate timekeeping is essential for deterministic behavior
in embedded Linux systems, where scheduled tasks, system
logs, and network synchronization must occur reliably [11],
[12]. However, limited documentation and inconsistent driver
support for external RTC integration with BBB create barriers
for developers seeking stable timekeeping solutions [22], [23].

This paper presents the design, development, and evaluation
of a custom Linux kernel driver for interfacing an external
RTC module with the BBB. The primary goal is to establish
persistent and accurate timekeeping across power cycles, en-
able alarm-driven automation, and provide deterministic sys-
tem behavior through scheduled event execution. The proposed
solution builds on the Linux RTC framework and ensures
compatibility with standard user-space tools such as hwclock
and date [19], [21].

The implementation involves low-level I2C communication,
device tree overlay configuration, and interrupt-driven event
management. By conducting comparative analyses between
onboard and external RTC configurations, the study quantifies
time drift, power-off retention, and alarm latency—parameters
critical for evaluating system determinism [17], [20].

Table I outlines the functional comparison between the
default onboard RTC and the external DS3231 module.

The findings of this research aim to enhance the reliability
and fault-tolerance of embedded systems utilizing BBB, es-
pecially for time-sensitive and power-aware applications. The
proposed approach also serves as a reference for custom driver
development within the Linux RTC framework.

II. LITERATURE REVIEW

The integration of Real-Time Clock (RTC) modules into
embedded Linux systems has been extensively explored in
both academic literature and industrial documentation. RTCs
are essential in embedded platforms where persistent and
accurate timekeeping is required during power interruptions or
reboots. The Linux kernel supports RTC functionality through
a well-defined RTC subsystem, which provides standard inter-
faces for time read/write, alarms, and interrupts [19].
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TABLE I
COMPARISON BETWEEN ONBOARD RTC AND EXTERNAL DS3231 ON BBB

Feature Onboard RTC DS3231 External RTC
Battery Backup No Yes
Accuracy (typ.) ±5 ppm ±2 ppm
Alarm Support Limited Full (with Interrupt)
Linux Driver Support Partial Custom / Available
Power-Off Time Retention No Yes
I2C Interface No (Internal) Yes (I2C-2)

A. RTC Integration in Embedded Linux

Several studies and technical manuals have focused on the
RTC subsystem in Linux. Kerrisk [20] provided a compre-
hensive explanation of Linux APIs and system calls for RTC
interaction. Yaghmour [21] discussed the process of building
embedded Linux systems with kernel-level RTC support. Lu et
al. [22] analyzed the Linux RTC driver model, highlighting its
modular design and support for diverse hardware interfaces.
However, most of these studies are generic and do not focus
on the BeagleBone Black platform specifically.

B. Hardware RTCs vs. Software Timekeeping

Research comparing hardware RTCs with software/system
timekeeping suggests that hardware-based solutions are sig-
nificantly more reliable in scenarios requiring persistence and
precision [23], [24]. Software timekeeping in Linux typically
relies on system uptime and is reset upon power loss, unless
synchronized with an NTP server, which may not be viable
in offline applications [25]. Studies by Pan et al. [26] and
Parikh [27] confirm that hardware RTCs offer better power-fail
recovery and scheduling accuracy than software alternatives.

C. Overview of I2C-Based RTC Modules

Three widely used I2C-based RTC chips—DS1307,
DS3231, and PCF8563—offer various levels of accuracy,
power consumption, and feature support [28], [29], [30]. Table
II compares their specifications.

TABLE II
COMPARISON OF COMMON I2C RTC MODULES

Feature DS1307 DS3231 PCF8563
Accuracy ±20 ppm ±2 ppm ±5 ppm
Battery Backup Yes Yes Yes
Alarm Function No Yes Yes
Temperature Compensated No Yes No
Interface I2C I2C I2C
Voltage Range 4.5–5.5 V 2.3–5.5 V 1.0–5.5 V
Cost Low Medium Low

D. Gap in Literature

Despite widespread documentation on RTCs in embedded
systems, limited attention has been paid to their role in
enforcing deterministic behavior, particularly in the context
of BeagleBone Black. While hardware integration of RTC
modules is a well-documented topic [43], [42], their practical
impact on task scheduling, power-aware behavior, and time-
sensitive system responses remains underexplored. Few studies

discuss the development of custom drivers for external RTCs
like the DS3231 on BBB running Linux [33]. This gap
underlines the need for targeted research that investigates the
deterministic role of RTC subsystems in real-time applications
built on the BBB platform.

This paper aims to bridge this gap by implementing and
evaluating a custom Linux driver for external RTC integration,
comparing performance metrics such as drift, persistence, and
interrupt latency, and demonstrating its importance in ensuring
predictable system behavior.

III. BEAGLEBONE BLACK AND RTC SUBSYSTEMS

A. BBB Architecture Relevant to RTC

The BeagleBone Black (BBB) is an affordable, credit-card-
sized development platform designed for embedded appli-
cations. Built around the Texas Instruments AM335x ARM
Cortex-A8 processor, it includes a robust set of peripherals
suitable for time-critical tasks. A crucial component in RTC
integration is the I2C bus, which provides a synchronous
serial interface for communication between the processor and
peripheral devices, including external RTC modules [50].

The AM335x chip features two onboard I2C buses (I2C0
and I2C1), which can be programmed through device tree
overlays in Linux [35]. I2C1 is generally exposed on the BBB
headers and used for attaching external devices like DS3231
and PCF8563 RTC modules. In addition, the BBB features a
power management IC (TPS65217C), which controls multiple
power domains that can impact the system’s RTC retention
during sleep or shutdown modes [36].

B. Onboard RTC Features and Limitations

While the AM335x SoC includes a built-in RTC peripheral,
its functionality is heavily dependent on a backup power
source such as a coin cell battery. The onboard RTC requires
continuous VRTC power to maintain time during system
shutdown. However, the BBB does not ship with a battery
holder for VRTC by default, limiting the usefulness of the
built-in RTC in standalone applications [52].

Furthermore, kernel-level support for the onboard RTC is
available but may not be initialized correctly without proper
configuration in the device tree [51]. The onboard RTC lacks
advanced features such as temperature compensation and pro-
grammable alarms, which are critical in precise and low-power
applications.
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TABLE III
COMPARISON: ONBOARD RTC VS. EXTERNAL RTC ON BEAGLEBONE BLACK

Feature Onboard RTC (AM335x) External RTC (e.g., DS3231)
Backup Power Required Yes (via VRTC) Yes (built-in CR1225 support)
Temperature Compensation No Yes
Alarm Interrupts Basic Multiple
Accuracy Moderate High (±2 ppm for DS3231)
Linux Kernel Support Yes Yes (via rtc-ds1307 module)
Integration Ease Hard (soldering battery required) Easy (I2C plug-in)

C. External RTC Integration (Hardware and System Aspects)

To overcome the limitations of the onboard RTC, external
RTC modules like the DS3231 or PCF8563 are commonly
integrated with the BBB using the I2C interface. Hardware
integration involves connecting the SDA and SCL lines of the
RTC module to the corresponding I2C pins on the BBB header
(usually P9 19 and P9 20), along with power (3.3V or 5V)
and ground. These modules typically include a backup battery
for maintaining time even when the board is unpowered [49].

On the software side, the Linux device tree overlay must be
modified to include the new RTC device. This can be done by
adding an entry for the RTC in ‘/boot/uEnv.txt‘ or via a custom
overlay file. The kernel module ‘rtc-ds1307‘ is commonly used
for both DS1307 and DS3231 modules [53].

The use of external RTCs not only simplifies power man-
agement but also offers superior accuracy and reliability. This
makes them ideal for time-critical applications in industrial
automation, data logging, and remote sensing, where persistent
timekeeping is essential even in the absence of network access
[41].

BeagleBone Black provides flexible I2C interfaces that
support external RTC integration to overcome the design lim-
itations of the onboard RTC. While the built-in AM335x RTC
offers basic support, external modules such as the DS3231 are
preferred in real-world embedded deployments due to their
high accuracy, ease of integration, and enhanced features.

IV. DESIGN AND IMPLEMENTATION

A. Block Diagram of the System

The overall system architecture involves the BeagleBone
Black (BBB) communicating with an external DS3231 RTC
module via the I2C interface. The BeagleBone Black is the
central unit, managing system-level functions, while the RTC
module handles precise timekeeping. The block diagram in
Figure 2 illustrates the interaction between the BeagleBone
Black, external RTC module, and key subsystems.

B. Hardware Integration: DS3231 Module with BBB via I2C

The DS3231 module is a highly accurate, I2C-based real-
time clock (RTC) device. It is integrated with the BeagleBone
Black using the I2C communication protocol. The hardware
integration involves connecting the SDA (data) and SCL
(clock) lines from the DS3231 module to the corresponding
I2C pins on the BBB header, typically P9 19 (SDA) and P9 20
(SCL) [49]. Additionally, the module is powered by 3.3V or
5V, depending on the configuration of the BBB’s power supply.

The external RTC module is backed by a coin-cell battery,
ensuring continuous timekeeping even when the system is
powered down.

C. Device Tree Overlay Configuration

The integration of the DS3231 RTC module with the BBB
requires modifications to the device tree overlay to enable the
system to recognize the connected hardware. The device tree
specifies the I2C bus and configures the RTC as a device that
can be accessed via the I2C protocol.

The device tree overlay can be added by creating a custom
file that specifies the I2C interface used for communication
with the DS3231 module. The overlay configuration includes
specifying the I2C bus and setting the RTC as a device with a
particular I2C address, ensuring it is correctly initialized during
the boot process [50].

This configuration ensures that the RTC is initialized during
the boot process and is mapped to the correct I2C bus, allowing
the BeagleBone Black to interact with it directly.

D. Custom RTC Driver Development

To enable the communication between the BeagleBone
Black and the DS3231 RTC, a custom kernel driver is de-
veloped. The driver handles the initialization, configuration,
and interaction with the RTC module. The key steps in driver
development are as follows:

1) I2C Communication: The RTC driver communicates
with the DS3231 using the I2C subsystem provided by the
Linux kernel. This communication is managed using the
standard I2C functions in Linux, ensuring that data is read
from and written to the RTC registers correctly. The driver uses
the I2C transfer function to send and receive data, ensuring
synchronization and correct timing for operations.

2) RTC Subsystem Registration: The RTC driver registers
the RTC device with the Linux kernel using the RTC subsys-
tem. This is necessary for the system to recognize the RTC as a
valid timekeeping device and for applications to interact with
it. The registration is done through the RTC register device
function, which enables the kernel to manage the device and
provide access to its features.

The RTC device is initialized with an appropriate set of
operations, such as setting and reading the time. The driver
must also provide callbacks for interrupt handling and alarm
functionality, ensuring the RTC can trigger system events when
needed.
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Fig. 1. Flowchart: External RTC Integration Workflow on BeagleBone Black

3) Implementation of Core Driver Functions: The core
functionality of the RTC driver includes setting and reading the
time, as well as handling alarms and interrupts. The following
key features are implemented within the custom RTC driver:

• set time: The function that sets the current time on the
RTC module. It converts the system time into the format
required by the DS3231 (BCD encoding) and writes it to
the appropriate RTC registers.

• read time: This function retrieves the current time from

Fig. 2. System Architecture: BeagleBone Black and DS3231 RTC Module
Integration

the RTC module. The time is read from the registers
and decoded from BCD format into a standard system-
readable format.

• alarm: The driver provides support for setting an alarm
within the RTC. The alarm time is written to the corre-
sponding RTC registers, and the driver handles interrupts
when the alarm time is reached.

• interrupt handlers: The driver implements interrupt
handlers that are triggered when the RTC alarm goes
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off. These handlers allow the system to respond to time-
critical events by invoking specific actions or sending
notifications.

These functions are designed to allow user-space applica-
tions to interact with the RTC through standard interfaces, such
as the ‘hwclock‘ command, which reads and sets the system
time based on the RTC.

The design and implementation of the custom RTC driver
for BeagleBone Black using the DS3231 module involves
several critical steps, including hardware integration via I2C,
device tree configuration, and the development of a custom
kernel driver. The driver facilitates seamless communication
between the BeagleBone Black and the RTC, allowing for
timekeeping, alarm handling, and real-time event management
in embedded systems. With these components, the system
achieves precise time synchronization and reliable event han-
dling for time-critical applications.

V. EXPERIMENTAL SETUP

A. Hardware

The experimental setup consists of the following hardware
components:

• BeagleBone Black (BBB): A single-board computer
based on the Texas Instruments AM335x ARM Cortex-
A8 processor. It provides the necessary processing power
and I2C communication interface for integration with
external peripherals such as the DS3231 RTC module.

• DS3231 RTC Module: A high-accuracy, low-power real-
time clock module that communicates with the Bea-
gleBone Black over the I2C interface. The DS3231 is
equipped with a coin-cell battery to provide continuous
timekeeping even when the system is powered off.

• Battery Backup: The DS3231 RTC module is powered
by a coin-cell battery (typically CR1225) to maintain time
during power failures or when the system is powered
down. This ensures the RTC continues to function without
relying on the main power supply.

These components form the core of the experimental setup,
where the BeagleBone Black communicates with the DS3231
RTC module over I2C to manage timekeeping tasks.

B. Software

The software environment for the experimental setup in-
cludes the following components:

• Linux Kernel Version: The BeagleBone Black runs a
customized Linux kernel that supports the RTC subsys-
tem. The kernel used for this experiment is version 5.4.x,
which includes the necessary drivers and I2C subsystem
support for interacting with the DS3231 RTC module.

• Build Environment: The system is built and configured
using the Yocto Project, a tool for creating customized
Linux distributions. The kernel and device tree are com-
piled using the ‘make‘ toolchain, with support for the
necessary I2C drivers and RTC modules.

• Test Tools:

– hwclock: A standard tool used to read and set
the hardware RTC. It provides a user-space interface
to interact with the RTC module and check time
synchronization.

– date: A standard Linux utility to display and set the
system time, used in conjunction with hwclock for
validating time synchronization between the system
clock and the RTC.

These software tools enable the validation of RTC function-
ality and time accuracy in various experimental conditions.

C. Test Cases

To evaluate the performance and accuracy of the RTC
system, several test cases are designed. These test cases focus
on key aspects such as time drift, alarm response, system
wake-up behavior, and power-fail recovery.

1) Time Drift: The time drift test case measures the accu-
racy of the RTC over a prolonged period. The test involves
running the system for several days to monitor how the RTC
time diverges from the system time. The time drift is calculated
by periodically comparing the system time with the time
reported by the RTC, using the hwclock tool. This test helps
to evaluate the long-term stability and accuracy of the DS3231
RTC module.

TABLE IV
TIME DRIFT TEST RESULTS (SYSTEM TIME VS. RTC TIME)

Test Day System Time (s) RTC Time (s)
Day 1 86400 86401
Day 2 172800 172802
Day 3 259200 259203

2) Alarm Response: The alarm response test case evaluates
the functionality of the RTC alarm feature. The DS3231 RTC
module can be programmed to trigger an interrupt or generate
a signal at a specific time. This test verifies whether the alarm
can trigger the expected response, such as a system wake-up
or triggering a custom handler. The test involves setting the
alarm at a specific time and verifying the system’s reaction
when the alarm goes off.

3) System Wake-Up: The system wake-up test case eval-
uates the ability of the RTC to wake up the system from a
low-power or suspended state. The BeagleBone Black is put
into a sleep or idle state, and the RTC alarm is set to wake
up the system at a predefined time. The test ensures that the
system correctly wakes up and resumes operations when the
RTC alarm triggers.

4) Power-Fail Recovery: The power-fail recovery test case
evaluates the behavior of the RTC during and after a power
failure. In this test, the BeagleBone Black is powered off for a
short period, and the RTC’s ability to maintain accurate time
during the power-off period is verified. After power is restored,
the system checks whether the RTC continues to provide
the correct time. This test ensures that the RTC maintains
timekeeping during power interruptions, utilizing the coin-cell
battery backup.
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TABLE V
POWER-FAIL RECOVERY TEST RESULTS

Power-Off Duration Time Loss (s) Recovery Status
5 minutes 0.5 Successful
10 minutes 1.2 Successful
30 minutes 3.5 Successful

The experimental setup involves a combination of hardware
and software tools to validate the performance of the RTC sys-
tem. By testing key aspects such as time drift, alarm response,
system wake-up, and power-fail recovery, the setup provides
a comprehensive evaluation of the BeagleBone Black and
DS3231 RTC module’s timekeeping capabilities in embedded
systems. The results from these test cases are essential for
determining the suitability of this RTC solution for real-time
and time-critical applications.

VI. RESULTS AND DISCUSSION

A. Time Drift Comparison (Onboard vs. External RTC)

The time drift test evaluates the accuracy of the onboard
system clock versus the external DS3231 RTC module over
a prolonged period. In this experiment, both the onboard
system time and the external RTC time were recorded over
several days to measure any discrepancies. Table VI shows
the results of the time drift comparison, with the external RTC
module demonstrating significantly lower drift compared to the
onboard system clock.

The results indicate that the onboard system clock exhibited
a noticeable drift over the three-day period, while the external
DS3231 RTC remained stable with minimal drift. This under-
scores the reliability of the DS3231 in maintaining accurate
time, even over extended periods.

B. Latency of Alarm Interrupts

The alarm interrupt functionality of the DS3231 RTC was
tested by setting alarms at different times and measuring the
latency from the scheduled alarm time to the actual interrupt
trigger. The latency measurements are critical for applications
that require precise event timing. The test results, shown
in Table VII, demonstrate that the DS3231 module triggers
alarms within a consistent time frame, ensuring accurate event
scheduling.

The latency observed in the experiment was minimal and
consistent, indicating that the alarm interrupt handling mech-
anism of the DS3231 RTC is efficient, with an average
latency of approximately 5 milliseconds. This performance is
crucial for time-sensitive applications where precise timing of
interrupts is necessary.

C. Power-Off Time Retention Behavior

To evaluate the power-off time retention behavior, the
BeagleBone Black was powered down for a predefined period,
and the RTC’s ability to retain accurate time during this power
loss was assessed. The test results, summarized in Table VIII,
demonstrate that the DS3231 RTC maintains time even after

the system power is restored, thanks to its coin-cell battery
backup.

The results show that the RTC retained time accurately,
with minimal drift, even after the power-off period. This
feature ensures that the system can recover seamlessly from
power interruptions, which is essential for mission-critical
applications.

D. Analysis of Deterministic System Behavior Using RTC
Scheduling

One of the key advantages of using an external RTC
in embedded systems is its ability to provide deterministic
behavior. In time-critical applications, precise scheduling of
tasks based on real-time events is essential. The RTC can
be used to trigger interrupts or wake-up events with high
accuracy. In this experiment, the RTC was used to schedule
periodic events, and the system’s response time was measured.

The system exhibited predictable and consistent behavior
when using the RTC for scheduling tasks, with minimal jitter
in event timing. This deterministic behavior is crucial for
applications that require guaranteed time intervals between
events. The external RTC module ensures that scheduled
tasks are executed at precise times, enhancing the system’s
reliability and performance.

E. System Stability and Power Efficiency Insights

The integration of the DS3231 RTC module into the Beagle-
Bone Black platform improves both system stability and power
efficiency. By offloading timekeeping tasks to the dedicated
RTC module, the BeagleBone Black can enter low-power
states without losing track of time, thus conserving energy
when not actively processing. The coin-cell battery backup of
the RTC ensures that timekeeping continues even during power
cycles, making the system more resilient to interruptions.

The system’s overall power efficiency was improved by
utilizing the RTC for wake-up and scheduling purposes. By
reducing the reliance on the main system clock and leveraging
the RTC for time-critical operations, the BeagleBone Black
can operate in a more energy-efficient manner, which is
especially valuable in battery-powered applications.

The experimental results indicate that the external DS3231
RTC module provides significant advantages over the onboard
system clock, including lower time drift, more reliable alarm
interrupts, and accurate time retention during power loss.
The use of the RTC for deterministic scheduling ensures
that time-sensitive tasks are executed reliably, enhancing the
system’s performance in embedded applications. Furthermore,
the integration of the RTC improves system stability and power
efficiency, making it an ideal choice for embedded systems that
require continuous timekeeping and low power consumption.

VII. USE CASE DEMONSTRATION

A. Scheduled Data Logger (e.g., Temperature Sensor with
Time-Stamping)

One of the key applications of the BeagleBone Black (BBB)
and DS3231 RTC integration is in data logging systems. In this
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TABLE VI
TIME DRIFT COMPARISON: ONBOARD VS. EXTERNAL RTC

Test Day Onboard System Time Drift (s) External RTC Time Drift (s)
Day 1 2.5 0.1
Day 2 5.1 0.3
Day 3 7.6 0.5

TABLE VII
ALARM INTERRUPT LATENCY

Alarm Time (s) Measured Latency (ms)
60 5.2
120 4.8
180 5.1

TABLE VIII
POWER-OFF TIME RETENTION BEHAVIOR

Power-Off Duration (min) Time Drift After Power-On (s)
5 0.3
10 0.5
30 1.2

use case, the system is designed to monitor environmental
parameters, such as temperature, at regular intervals and
log the data with precise time-stamps provided by the RTC
module.

The system consists of a temperature sensor, such as the
LM35, which is connected to the BeagleBone Black for
analog-to-digital conversion. The RTC module, through its
alarm feature, triggers data logging events at pre-defined
intervals. Each data entry is time-stamped using the RTC,
ensuring accurate logging of the temperature data over time.

The following table illustrates the temperature data logged
by the system over a 24-hour period, with time-stamps pro-
vided by the DS3231 RTC:

TABLE IX
TEMPERATURE DATA LOGGING WITH TIME-STAMPS

Time (HH:MM:SS) Temperature (°C)
00:00:00 22.5
01:00:00 22.4
02:00:00 22.6
03:00:00 22.7
... ...
23:00:00 22.8

The table shows hourly temperature readings captured by
the sensor, each time-stamped by the DS3231 RTC. This
approach ensures that the data is accurately logged with the
precise time of measurement, allowing for effective tracking
and analysis of environmental changes.

B. RTC-Based Event Triggering for Automation

The RTC module can be used to trigger specific events or
actions in an automated system based on time schedules. This
feature is particularly useful in applications where certain tasks
must be performed at exact times, such as system wake-ups,
device activation, or data collection.

For example, an automated irrigation system can be de-
signed to trigger irrigation cycles based on time intervals
or environmental conditions. The DS3231 RTC is used to
schedule the irrigation events, ensuring that water is delivered
at the optimal times, regardless of system uptime or power
cycles.

In the following scenario, the system uses the RTC alarm
to trigger irrigation events at set intervals:

TABLE X
SCHEDULED IRRIGATION EVENTS TRIGGERED BY RTC ALARM

Event Time (HH:MM:SS) Action Triggered
06:00:00 Activate irrigation pump
12:00:00 Activate irrigation pump
18:00:00 Activate irrigation pump

The table shows the irrigation events scheduled to activate
the irrigation pump at precise times. By using the RTC to
handle event triggering, the system ensures consistent and
reliable operation, even during power cycles or system reboots.

C. Power-Aware Task Scheduler for Intermittent Systems

In systems that require low power consumption, such as
battery-operated devices, it is essential to implement power-
efficient scheduling mechanisms. The RTC-based task sched-
uler can be used to manage intermittent system activities,
ensuring that tasks are only executed when necessary and
at the appropriate time. This approach minimizes energy
consumption while maintaining the required functionality.

For instance, in a remote sensor node, the BeagleBone
Black can be configured to enter a low-power state during idle
periods, and the RTC can trigger the system to wake up period-
ically to collect sensor data or perform other essential tasks.
The following table demonstrates a power-aware scheduling
mechanism for a sensor node:

TABLE XI
POWER-AWARE TASK SCHEDULING FOR SENSOR NODE

Time Interval (hrs) Task Power Mode
0 - 1 Data collection Active
1 - 4 Data transmission Low Power (Sleep)
4 - 5 Data collection Active
5 - 10 Data transmission Low Power (Sleep)

In this case, the system alternates between active states
for data collection and low-power sleep states, with the RTC
triggering the wake-up and data collection events. The use of
RTC-based scheduling helps conserve battery life by ensuring
that the system only operates when necessary.
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The use of the DS3231 RTC in various use cases demon-
strates its versatility in embedded systems. In the scheduled
data logger scenario, the RTC ensures accurate time-stamping
of sensor data. In automation systems, the RTC’s event-
triggering capabilities allow for precise scheduling of tasks.
Furthermore, in power-aware systems, the RTC enables effi-
cient task scheduling, minimizing energy consumption while
ensuring the system performs critical tasks at the right times.
These use cases highlight the critical role of RTC modules
in enhancing system performance, reliability, and efficiency in
time-sensitive and resource-constrained applications.

VIII. CONCLUSION AND FUTURE WORK

A. Summary of Findings and Their Implications

This research demonstrates the effective integration of the
DS3231 real-time clock (RTC) module with the BeagleBone
Black (BBB) platform for enhancing timekeeping in embed-
ded systems. The key findings of the study indicate that
the DS3231 RTC provides significant advantages over the
onboard system clock in terms of time accuracy, stability,
and power efficiency. The time drift observed in the onboard
system clock was considerably higher compared to the external
RTC, emphasizing the importance of using an external RTC
for applications requiring precise timekeeping over extended
periods.

The ability of the DS3231 to maintain accurate time even
during power failures, supported by its battery backup, ensures
the system’s robustness and reliability. Additionally, the alarm
interrupt latency was minimal, demonstrating the RTC’s capa-
bility to trigger time-sensitive events with precision. Further-
more, the use of RTC for deterministic scheduling has been
shown to improve the system’s behavior in time-critical tasks,
thus providing a stable foundation for automation and other
real-time applications.

These findings underscore the importance of integrating a
reliable RTC in embedded systems, particularly in applications
requiring continuous and precise time tracking, low power
consumption, and fault tolerance. The ability to schedule
events accurately and handle power failures enhances the
overall performance and stability of embedded systems.

B. Limitations of the Current Implementation

While the current implementation successfully demonstrates
the basic functionality of the DS3231 RTC on the BeagleBone
Black platform, there are certain limitations to consider. One
of the primary limitations is the reliance on the I2C interface
for communication between the RTC and the BeagleBone
Black. Although I2C is widely used, it can be subject to data
collisions or interference in systems with multiple I2C devices,
potentially affecting the reliability of communication.

Another limitation is the current lack of synchronization
between the RTC and external time sources, such as Network
Time Protocol (NTP) servers. The absence of a time synchro-
nization mechanism can lead to gradual drift, particularly in
applications that require synchronization with a global time
reference.

Additionally, the security of the RTC module itself is
another concern. The DS3231 module, while accurate and
reliable, does not offer built-in security features to prevent
tampering with the time settings, which could be a critical
issue in certain applications where time integrity is essential.

C. Proposed Enhancements

The current implementation can be enhanced in several
ways to improve its functionality, security, and synchroniza-
tion:

1) Integration with NTP Fallback: To address the potential
drift in the RTC over long periods, it is proposed to integrate
the RTC with a fallback mechanism using Network Time
Protocol (NTP). By periodically synchronizing the RTC with
an NTP server, the system can maintain highly accurate time,
correcting any drift that may occur. This integration would
make the system even more robust, especially in scenarios
where precise time synchronization with a global time source
is critical. Implementing an NTP-based fallback would provide
an additional layer of reliability, ensuring that the RTC remains
synchronized even in the absence of power cycles or manual
intervention.

2) Secure RTC for Tamper-Resistant Applications: For ap-
plications that require high security, such as financial transac-
tions, industrial control, or secure logging, the RTC module
needs to be tamper-resistant. Future work could involve in-
tegrating secure RTC solutions that include features such as
hardware-based encryption or protection mechanisms against
unauthorized changes to the time settings. This could involve
utilizing secure microcontrollers or RTC modules with built-in
cryptographic capabilities, ensuring that the system remains
resilient against tampering or attacks aimed at manipulating
the time data.

3) Cloud Synchronization and Alert Mechanisms: To ex-
tend the functionality of the current RTC-based system, future
enhancements could involve cloud synchronization and alert
mechanisms. By integrating the RTC with a cloud-based
platform, the system could periodically upload time-stamped
data, ensuring that all logs or actions are synchronized with
a cloud server. This would enable real-time monitoring and
analytics of time-sensitive data, allowing for more efficient
management and response in remote or distributed systems.

Additionally, the system could be enhanced with alert
mechanisms that notify users or administrators when time
drift or other discrepancies are detected. For instance, if the
RTC is found to be out of sync with the system clock, an
alert could be sent to a cloud service or directly to the user,
prompting corrective action. This feature would be particularly
useful in applications requiring high availability and precise
time synchronization.

The integration of the DS3231 RTC with the BeagleBone
Black platform has proven to be an effective solution for
enhancing timekeeping in embedded systems. The system
demonstrated improved accuracy, stability, and power effi-
ciency, making it suitable for a wide range of applications,
from environmental monitoring to automation. However, there
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are areas for improvement, particularly in time synchroniza-
tion, security, and system integration. Future work will focus
on addressing these limitations by integrating NTP synchro-
nization, secure RTC modules, and cloud synchronization with
alert mechanisms. These enhancements will further improve
the system’s reliability, security, and scalability in real-world
applications.
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