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Abstract—The rapid proliferation of Internet of Things (IoT)
devices across critical domains—such as healthcare, industrial
automation, and smart cities—has brought with it a new spec-
trum of cybersecurity challenges. These devices, often charac-
terized by limited computational capabilities and poor security
configurations, are increasingly targeted by sophisticated cyber
threats. Traditional intrusion detection systems are not equipped
to handle the dynamic, large-scale, and heterogeneous nature of
IoT networks, especially under real-time constraints. This paper
addresses this critical gap by proposing an Al-based anomaly
detection framework tailored specifically for real-time threat mit-
igation in IoT environments. The primary objective of this study
is to develop and evaluate a lightweight, intelligent system capable
of detecting anomalous behavior in IoT traffic with high accuracy
and minimal latency. The proposed framework leverages machine
learning algorithms to model normal device behavior and identify
deviations that may indicate malicious activity. Key components
include real-time data acquisition, feature extraction, anomaly
classification, and automated response mechanisms. Experimen-
tal results demonstrate the system’s effectiveness in identifying
various categories of cyber threats—including denial-of-service
attacks and unauthorized access attempts—with a high detection
rate and low false alarm ratio. Furthermore, the implementation
is optimized for deployment on edge devices, ensuring scalability
and reduced reliance on cloud infrastructure. The findings
underscore the potential of real-time AI-driven anomaly detection
as a viable and scalable solution for enhancing the resilience of
IoT networks against evolving cybersecurity threats.

Keywords—IoT Security, Anomaly Detection, Real-Time Sys-
tems, Machine Learning, Cyber Threat Mitigation, Edge Com-
puting

I. INTRODUCTION

The Internet of Things (IoT) is revolutionizing modern
digital infrastructure by interconnecting billions of heteroge-
neous devices across domains such as smart homes, industrial
automation, healthcare, and transportation [1], [2]. As IoT
adoption expands exponentially, so does the attack surface
for cyber threats. These interconnected devices typically op-
erate with constrained resources, limited user interfaces, and
outdated firmware, making them susceptible to various cyber-
attacks including Distributed Denial of Service (DDoS), data
exfiltration, and remote exploitation [3], [4]. Recent studies
have reported an alarming rise in the frequency and so-
phistication of IoT-specific threats, often orchestrated through
automated botnets and malware such as Mirai and BrickerBot

(51, [6].

Traditional cybersecurity mechanisms, which rely on
signature-based detection or static rule sets, are no longer
adequate in protecting IoT networks. These systems struggle
to generalize across diverse devices and cannot efficiently re-
spond to novel attack patterns, especially in dynamic, resource-
constrained environments [7], [8]. Moreover, the latency
introduced by centralized processing can hinder real-time
threat mitigation, particularly in time-sensitive applications
like smart healthcare or autonomous driving [9], [10].

To address these limitations, researchers are increasingly
exploring Artificial Intelligence (AI) and Machine Learning
(ML)-based solutions for anomaly detection in IoT systems.
Unlike traditional methods, Al-based models can learn from
large volumes of network traffic and device behavior to
identify subtle and previously unseen anomalies [11], [12].
Real-time implementation of these models—particularly on
the edge or fog layer—enables swift detection and response
without relying on cloud connectivity [13], [27].

The objective of this paper is to design and evaluate a real-
time Al-based anomaly detection framework tailored for IoT
networks. Our approach focuses on:

« Developing a lightweight, efficient detection model using
supervised and unsupervised ML algorithms;

o Implementing real-time monitoring and classification of
traffic anomalies;

o Minimizing false positives while maximizing detection
accuracy;

o Ensuring edge-compatible deployment with low latency
and computational overhead.

Table I summarizes the key differences between traditional
detection systems and the proposed Al-driven anomaly detec-
tion framework.

This paper makes the following contributions:

1) A novel, real-time Al-based anomaly detection architec-
ture optimized for IoT environments;

2) A hybrid detection approach using both statistical and
machine learning methods;

3) An empirical evaluation on publicly available and syn-
thetic datasets to assess model performance;

4) A discussion on deployment feasibility and scalability
for real-world IoT networks.

Journal of Scientific Innovation and Advanced Research © 2025 JSIAR



Journal of Scientific Innovation and Advanced Research (JSIAR) 2025

TABLE I: Comparison Between Traditional and Al-Based Anomaly Detection in IoT

Feature Traditional Systems Al-Based Framework
Detection Technique Signature-based Pattern-learning via ML/DL
Adaptability Limited to known attacks Detects novel threats

Real-Time Capability

Low, especially at scale

High, with edge deployment

Resource Efficiency

Inefficient for IoT devices

Designed for constrained environ-
ments

False Positives

High in dynamic networks

Reduced through intelligent filter-
ing

The rest of this paper is organized as follows: Section
IT reviews related work in Al-based IoT anomaly detection.
Section III presents the proposed system architecture and
methodology. Section IV describes the experimental setup and
results. Section V discusses insights and challenges. Finally,
Section VI concludes the paper and outlines future research
directions.

II. RELATED WORK

The security of IoT networks has gained substantial at-
tention due to the exponential increase in connected devices
and the corresponding rise in attack vectors. Researchers have
proposed a wide range of anomaly detection techniques to
identify irregularities in IoT traffic that may signal malicious
behavior. Traditional anomaly detection methods primarily
relied on rule-based or statistical models that evaluate network
traffic for deviations from predefined norms [16], [17]. While
effective in static environments, such techniques often fall
short in dynamically evolving IoT ecosystems characterized
by heterogeneous devices and communication protocols [18].

Over the past decade, numerous studies have explored
Al-based detection approaches to overcome the limitations
of traditional methods. For example, decision trees, support
vector machines, and clustering techniques have been applied
for classifying anomalous patterns in IoT environments [19]-
[21]. Supervised and unsupervised learning techniques such as
Isolation Forests and Autoencoders have also shown promise
in detecting zero-day attacks by modeling normal behavior and
identifying deviations [22], [23].

In addition, deep learning-based approaches are increasingly
being employed due to their ability to extract hierarchical
features from large volumes of complex data. Recurrent Neu-
ral Networks (RNNs), Long Short-Term Memory (LSTM)
networks, and Convolutional Neural Networks (CNNs) have
been used to analyze time-series IoT traffic for behavior-based
intrusion detection [24]-[26]. For instance, [27] demonstrated
a CNN-based model that achieved high detection accuracy for
multiple classes of attacks in a smart city IoT scenario.

However, many of these techniques rely on centralized cloud
servers for processing, which may introduce latency and raise
privacy concerns. This has led to an increasing interest in
edge and fog computing frameworks for on-device anomaly
detection. Studies such as [28] and [29] proposed edge-
deployable lightweight models capable of performing threat
analysis locally, thereby reducing response time and bandwidth
consumption. Federated learning has also been explored as

a privacy-preserving distributed approach that allows local
model training without sharing raw data [30], [31].

Table II provides a comparative overview of traditional
and Al-based anomaly detection systems in IoT, highlighting
the trade-offs in terms of detection capability, scalability, and
deployment feasibility.

Despite the progress, several challenges remain. Many
Al-based systems are not optimized for real-time detection
and require significant computational resources, limiting their
applicability on resource-constrained IoT devices [32], [33].
Furthermore, existing models often suffer from high false
positive rates and may not generalize well across diverse
network environments without retraining [34]. The lack of
labeled datasets for supervised learning further complicates
anomaly detection in practical settings [35], [36].

Therefore, there is a pressing need for efficient, real-time,
and adaptive anomaly detection systems that can operate under
the constraints of IoT networks. This paper addresses this gap
by proposing a real-time Al-based detection framework that
is lightweight, adaptive, and capable of deployment on edge
or fog platforms.

III. SYSTEM ARCHITECTURE

The proposed system architecture for real-time Al-based
anomaly detection in IoT networks is designed to enable
rapid threat identification and mitigation while maintaining
adaptability and scalability across diverse deployment envi-
ronments. As shown in Fig. 1, the architecture comprises
five core components: IoT Devices, Data Collection Layer,
Feature Extraction Module, Al-based Detection Engine, and
Mitigation/Response Module. These components are strategi-
cally distributed across edge, fog, and cloud layers to balance
processing load, latency, and data privacy.

A. IoT Devices

This layer consists of heterogeneous IoT devices includ-
ing sensors, actuators, smart appliances, and embedded con-
trollers. These devices generate diverse traffic and telemetry
data which forms the basis for anomaly detection.

B. Data Collection Layer

The data collection layer intercepts real-time traffic from
IoT nodes, capturing metadata such as packet headers, device
states, and communication patterns. This module may include
lightweight probes and agents installed at edge routers or fog
gateways to ensure minimal delay in capturing traffic streams.
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TABLE II: Comparison of Anomaly Detection Techniques in IoT Networks

Aspect Traditional Methods Al-Based Methods

Detection Basis Rules or Signatures Behavioral Learning

Adaptability Low (static rules) High (generalizable models)

Detection Accuracy Moderate High (depends on training
data)

Real-Time Capability Limited Feasible with  lightweight
models

Deployment Scope Primarily cloud-based Edge/Fog/Cloud hybrid mod-
els

Data Flow

IoT Devices
(Sensors, Actuators)

i

Data Collection Layer
(Edge Gateways, Protocols)

l

Feature Extraction Module

l

Al-based Detection Engine
(ML/DL Models)

i

Mitigation / Response Module
(Alerts, Automated Actions)

L Deployineﬁt Layer
‘A W

Deployment Environment
(Edge / Fog / Cloud)

Fig. 1: Proposed System Architecture for Real-Time Al-based
Anomaly Detection

C. Feature Extraction Module

Raw traffic data is pre-processed and transformed into
structured feature vectors that are fed into the Al detection
engine. Features may include packet size, inter-arrival time,
protocol usage, connection duration, and entropy-based char-
acteristics. Dimensionality reduction techniques (e.g., PCA
or autoencoders) may be applied here to optimize inference
speed.

D. Al-based Detection Engine

This core module hosts a trained machine learning or
deep learning model capable of detecting anomalous behavior
in real-time. It may consist of ensemble classifiers, LSTM
networks for sequential behavior analysis, or hybrid models
combining unsupervised clustering with supervised classifica-

tion. Model inference is optimized for edge/fog devices using
quantization and pruning techniques.

E. Mitigation/Response Module

Upon identifying an anomaly, the system generates auto-
mated responses such as quarantining the affected node, re-
routing traffic, or alerting system administrators. The mitiga-
tion policies are customizable and context-aware, depending
on the severity and type of detected anomaly.

F. Edge/Fog/Cloud Deployment Considerations

The proposed architecture supports flexible deployment:

« Edge: Lightweight models deployed on gateways or local
hubs for ultra-low latency response.

o Fog: Regional processing units handle more complex
models with reduced response delays compared to cloud.

o Cloud: Centralized learning, retraining, and global threat
intelligence aggregation.

TABLE III: System Module Summary and Responsibilities

Module Responsibilities

IoT Devices Generate telemetry and network traffic

Data Collection Layer Capture and forward data streams to pro-

cessing units

Feature Extraction Convert raw data into structured inputs for

ML models

Al Detection Engine Real-time anomaly detection using trained

models

Mitigation/Response Trigger automated actions to prevent fur-

ther compromise

Edge/Fog/Cloud Layer Host components based on latency and

resource constraints

This modular architecture ensures scalability, resilience, and
efficient threat mitigation suitable for dynamic IoT ecosys-
tems. Furthermore, the edge-enabled deployment supports
rapid, privacy-preserving inference critical in time-sensitive
applications such as industrial automation and smart health.

IV. METHODOLOGY

This section outlines the systematic approach adopted to
develop the real-time Al-based anomaly detection framework
for IoT networks. The methodology comprises five key stages:
dataset selection, data preprocessing, feature engineering, al-
gorithm development, and real-time inference deployment.
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A. Dataset Selection

To ensure reproducibility and reliability, the NSL-KDD and
TON_IoT datasets were employed. The NSL-KDD dataset
is a refined version of the KDDCup’99, commonly used
for network intrusion detection, while the TON_IoT dataset
includes telemetry data from heterogeneous IoT devices and
is designed for threat modeling in smart environments. These
datasets collectively offer both classical and modern IoT traffic
patterns with labeled normal and anomalous instances.

B. Preprocessing and Feature Engineering

The raw datasets underwent multiple preprocessing steps:

e Missing Value Handling: Null and incomplete entries
were removed or imputed using mode imputation.

« Categorical Encoding: Protocol types, services, and flag
fields were label encoded.

o Normalization: All numerical attributes were normalized
using Min-Max scaling to ensure uniformity.

« Feature Selection: Recursive Feature Elimination (RFE)
was applied to retain the most significant 30 features
based on anomaly relevance.

Table IV outlines key engineered features utilized in the
detection model.

TABLE IV: Selected Feature Set for Anomaly Detection

Start
(Receive IoT Data)

'

Data Preprocessing
(Cleaning, Normalization)

'

Feature Extraction

'

Al Model Inference
(Anomaly Detection)

'

Anomaly Detected?
Yes

Trigger Alert / Response o

Feature Description

Connection time in seconds

Type of protocol used (e.g., TCP, UDP)
Statistical variation in packet size
Application-level service requested
Number of connections per second

Duration

Protocol Type

Packet Size Variance
Service

Connection Rate
Entropy of Payload
Inbound/Outbound Ratio

Packet flow directionality metric

N\

Log & Store Results

Information entropy for payload randomness l

C. Machine Learning and Deep Learning Models

To capture both spatial and temporal characteristics of
IoT traffic, a hybrid detection architecture was implemented
comprising:

« Autoencoder: For unsupervised learning of normal behav-

ior and reconstruction error-based anomaly detection.

¢« LSTM (Long Short-Term Memory): To model sequential

dependencies in time-series network traffic.

« Isolation Forest: For rapid detection of outliers with a

tree-based unsupervised approach.

These models were evaluated independently and in ensem-
ble format to maximize detection accuracy and minimize false
positives.

D. Real-Time Data Flow and Inference Strategy

Real-time streaming of IoT traffic was simulated using the
Kafka message broker with a Python-based agent injecting
packet-level data. The inference engine processes these packets
via a data pipeline composed of buffering, feature transforma-
tion, and classification.

Figure 2 illustrates the real-time inference flow.

End Process

Fig. 2: Flowchart of Real-Time Inference Pipeline

E. Tools and Platforms

The proposed architecture was implemented using the fol-
lowing technology stack:

o TensorFlow and Keras: For building and training Autoen-
coder and LSTM models.

« Scikit-learn: For implementing Isolation Forest and pre-
processing steps.

« Kafka and Flask: For simulating live data pipelines and
hosting REST APIs.

o EdgeX Foundry: Used for edge computing deployments
and device virtualization.
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o Docker and Kubernetes: Containerized deployment and
orchestration for scalability testing.

All experiments were run on a workstation with Intel i7
CPU, 32GB RAM, and an NVIDIA RTX 3080 GPU for
accelerated deep learning training.

The combination of curated IoT datasets, advanced Al
techniques, and edge-compatible deployment tools ensures that
the proposed system not only detects intrusions with high
accuracy but also responds in near real-time. Table VI presents
a summary of the methodology stages and tools used.

V. EXPERIMENTAL SETUP

This section describes the hardware and software environ-
ment used to conduct experiments, the evaluation metrics
applied for performance assessment, and the baseline methods
employed for comparative analysis.

A. Hardware and Software Environment

All experiments were performed on a workstation equipped
with an Intel Core i7-10700K CPU running at 3.8 GHz, 32
GB of DDR4 RAM, and an NVIDIA GeForce RTX 3080 GPU
with 10 GB VRAM. The system operated on Ubuntu 20.04
LTS, providing a stable platform for both training and real-
time inference.

The software environment consisted of Python 3.9, with
machine learning frameworks TensorFlow 2.10 and Keras for
deep learning model implementation. Scikit-learn 1.0 was used
for classical algorithms and preprocessing. Kafka 2.8 was
deployed to simulate the real-time streaming environment,
while EdgeX Foundry was utilized to emulate edge computing
infrastructure. Containerization and orchestration were man-
aged through Docker 20.10 and Kubernetes 1.23 to enable
scalable deployment scenarios.

B. Evaluation Metrics

To comprehensively evaluate the anomaly detection frame-
work, multiple standard metrics were adopted:

o Accuracy: Measures the overall correctness of classifica-
tion by comparing true positive and true negative results
against the total predictions.

o Precision: Reflects the proportion of correctly identified
anomalies out of all instances classified as anomalies.

o Recall (Sensitivity): Captures the proportion of actual
anomalies that were correctly detected by the system.

¢ FI-Score: Harmonic mean of precision and recall, pro-
viding a balanced metric when the class distribution is
imbalanced.

« ROC-AUC (Receiver Operating Characteristic - Area
Under Curve): Indicates the model’s ability to distinguish
between normal and anomalous traffic across all classifi-
cation thresholds.

¢ Detection Latency: Time elapsed between receiving the
data packet and producing the anomaly inference, critical
for real-time response.

C. Baseline Methods for Comparison

To validate the efficacy of the proposed Al-based approach,
it was benchmarked against traditional and contemporary
detection methods:

« Signature-Based Detection: Relies on known attack sig-
natures and patterns, exemplified by Snort IDS.

o Statistical Anomaly Detection: Uses threshold-based
techniques analyzing statistical deviations.

o Classical Machine Learning: Algorithms such as Support
Vector Machines (SVM) and Random Forest.

« Single Deep Learning Models: Including standalone Au-
toencoder and LSTM models without ensemble integra-
tion.

Table V summarizes the experimental setup details.

VI. RESULTS AND DISCUSSION

This section presents the experimental outcomes of the
proposed real-time Al-based anomaly detection framework
in IoT networks. Quantitative results are supplemented with
visualizations such as confusion matrices and ROC curves.
The performance is compared against baseline methods, and
aspects like false positive/negative rates, scalability, and secu-
rity improvements are discussed.

A. Performance Metrics and Visualizations

Table VII summarizes key performance indicators for the
proposed ensemble model alongside traditional baselines. The
proposed method achieves an accuracy of 96.8%, significantly
outperforming classical machine learning models such as SVM
and Random Forest.

The ROC curves depicted in Figure 3 demonstrate that
the ensemble model achieves the highest Area Under the
Curve (AUC) score of 0.97, indicating excellent discrimination
between normal and anomalous traffic.

PR Enkitb

vl

-~ LSTM

5 L Autoencoder

True Positive Rate
I
1

[TINY

lf
~

T T T
2 3 4
5 5 5

ul
wi—
vl

False Positive Rate

Fig. 3: ROC Curves for Different Detection Methods
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TABLE V: Summary of Experimental Setup

Edge Platform
Containerization
Evaluation Metrics
Latency
Baseline Methods

Aspect Details

Hardware Intel i7-10700K CPU, 32 GB RAM, NVIDIA RTX 3080 GPU
Operating System Ubuntu 20.04 LTS

Programming Language Python 3.9

Frameworks TensorFlow 2.10, Keras, Scikit-learn 1.0

Streaming Platform Kafka 2.8

EdgeX Foundry
Docker 20.10, Kubernetes 1.23
Accuracy, Precision, Recall, F1-Score, ROC-AUC, Detection

Signature-Based, Statistical, SVM, Random Forest, Autoen-
coder, LSTM

TABLE VI: Summary of Methodology and Tools

Phase Tools/Techniques Used

Dataset NSL-KDD, TON_IoT

Preprocessing Label Encoding, Min-Max Scaling,
RFE

Modeling Autoencoder, LSTM, Isolation For-
est

Streaming Kafka, Python Agents

Deployment TensorFlow, Flask, EdgeX
Foundry, Docker

The confusion matrix for the proposed model (Figure 4)
shows low false positive and false negative rates, confirming
the robustness of detection.

TP = 945 FP = 35
Anomaly| True Positive False Positive
é
Q
=
2
Q
<
Normal | False Negative True Negative
FN = 27 TN = 993
Anomaly Normal

Predicted Class

Fig. 4: Confusion Matrix of the Proposed Ensemble Model

B. Real-Time Detection Performance

Latency tests reveal that the system achieves an average
detection latency of 35 milliseconds per packet, suitable for
real-time IoT network environments. This low latency is facil-
itated by edge deployment and optimized model architectures,
enabling timely threat mitigation.

C. False Positive and False Negative Analysis

The proposed system reports a false positive rate (FPR) of
3.2% and a false negative rate (FNR) of 2.8%. These low rates
demonstrate improved reliability compared to traditional IDS

which often suffer from high FPR due to signature limitations
and evolving threat vectors.

D. Scalability and Resource Efficiency

Resource utilization profiling indicates that the combined
use of lightweight models and edge computing reduces band-
width and computational overhead by 40% compared to cloud-
only solutions. Containerized deployment further supports
horizontal scaling to handle increased network loads without
degradation in detection quality.

E. Security Improvement and Threat Mitigation Rate

By integrating multi-model anomaly detection and real-
time response modules, the framework improved overall threat
mitigation rates by 15% relative to baseline solutions. This
improvement is critical for securing dynamic IoT ecosystems
against sophisticated cyberattacks, ensuring system resilience
and data integrity.

F. Discussion

The experimental results confirm that the proposed Al-based
anomaly detection framework outperforms conventional meth-
ods in accuracy, responsiveness, and false alarm reduction. The
ability to deploy on edge devices enables timely intervention,
addressing the critical need for real-time cybersecurity in IoT
networks. Furthermore, scalability tests validate the model’s
adaptability to large-scale deployments, paving the way for
practical implementation in diverse IoT applications.

VII. CONCLUSION & FUTURE WORK
Conclusion

This paper presented a comprehensive real-time Al-based
anomaly detection framework tailored for cybersecurity threat
mitigation in IoT networks. The proposed system integrates
advanced machine learning models deployed at the edge to
enable timely and accurate detection of anomalous activi-
ties, addressing the critical challenges posed by the rapidly
expanding and heterogeneous IoT ecosystem. Experimental
results demonstrated superior detection accuracy, low false
positive and negative rates, and minimal latency compared
to traditional signature-based and classical machine learning
methods. The architecture’s scalability and resource efficiency
make it well-suited for practical deployment across diverse
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TABLE VII: Comparison of Detection Performance

Method Accuracy (%) | Precision | Recall | F1-Score
Signature-Based IDS 82.3 0.79 0.75 0.77
Statistical Thresholding 85.1 0.81 0.78 0.79
SVM 90.4 0.88 0.86 0.87
Random Forest 92.7 091 0.89 0.90
Autoencoder 94.2 0.93 0.90 0.92
LSTM 95.3 0.94 0.92 0.93
Proposed Ensemble 96.8 0.95 0.94 0.95
IoT environments. These contributions have significant impli- [10] M. A. Rahman et al., “Blockchain-based secure data provenance for [oT

cations for enhancing the resilience and security posture of
IoT infrastructures by enabling proactive and intelligent threat
mitigation strategies.

Despite these strengths, certain limitations exist, such as the
dependency on quality and diversity of training datasets and
the challenges in adapting to novel, sophisticated multi-stage
cyberattacks. Additionally, while edge deployment reduces
latency, resource constraints in some IoT devices may limit
the complexity of deployable models.

Future Work

Future research will focus on extending the framework to
address more complex and evolving threat models, including
multi-stage and stealthy attacks that require deeper behavioral
analysis over time. Efforts will also be made to enhance de-
ployment strategies on heterogeneous IoT platforms, ranging
from resource-constrained sensors to powerful edge servers,
ensuring broad applicability and adaptability.

Integration with emerging technologies such as blockchain
can enhance data integrity and decentralized trust, while
federated learning approaches may enable collaborative model
training without compromising user privacy. Moreover, incor-
porating explainable Al (XAI) techniques will improve model
transparency, enabling stakeholders to better understand, trust,
and verify detection outcomes. These advancements will fur-
ther strengthen the robustness and practical utility of Al-driven
cybersecurity solutions in the ever-evolving IoT landscape.
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