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Abstract—Cyber attacks have become increasingly sophisti-
cated, posing severe threats to critical digital infrastructure across
sectors. Traditional intrusion detection systems often struggle
with evolving attack patterns, high false alarm rates, and scalabil-
ity limitations. To address these challenges, this paper proposes an
integrated framework that combines the power of deep learning
with scalable and automated data science pipelines for effective
cyber attack detection. The approach involves the deployment of
a real-time data ingestion and preprocessing pipeline, followed
by training a deep neural network—specifically an LSTM-based
model—to identify anomalous behavior in network traffic. The
proposed system is designed for scalability, enabling efficient
handling of high-velocity data streams, while also achieving high
detection accuracy. Experiments conducted on the CICIDS2017
dataset demonstrate the effectiveness of the framework, achieving
a detection accuracy of 96.2% and a notable reduction in false
positives compared to baseline models. This integration of deep
learning with data engineering components not only enhances
threat detection capabilities but also offers a practical and
scalable solution for modern cybersecurity environments.
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I. INTRODUCTION

The proliferation of internet-connected systems and services
has significantly increased the attack surface for malicious
actors, making cyber attack detection a critical priority in
modern digital infrastructure [1], [2]. Cyber attacks range
from distributed denial-of-service (DDoS) and phishing to
advanced persistent threats and zero-day exploits, all of which
can lead to significant operational and financial damage [3].
As attack techniques grow more sophisticated, the necessity
for intelligent, adaptable, and real-time detection mechanisms
becomes paramount.

Traditional Intrusion Detection Systems (IDS), which rely
on manually engineered rules and signature-based techniques,
often fall short in detecting novel or polymorphic threats [4].
These systems are typically static, require frequent manual
updates, and struggle to keep up with the high velocity and
volume of network data [5]. Moreover, their limited capability
to learn from evolving attack patterns results in a high rate
of false positives and false negatives, compromising their
reliability in dynamic threat landscapes [6].

To address these limitations, the cybersecurity community
has increasingly turned to machine learning and, more re-
cently, deep learning models, which offer automated feature
extraction and superior pattern recognition capabilities [7], [8].

Deep learning architectures such as Convolutional Neural Net-
works (CNNs), Long Short-Term Memory (LSTM) networks,
and Transformer-based models have demonstrated remarkable
success in classifying complex behaviors and detecting anoma-
lies in vast datasets [9], [10]. When integrated with real-time
data science pipelines, these models can process and analyze
large volumes of streaming network data, enabling prompt
detection and mitigation of cyber threats [11].

This paper presents a comprehensive framework that uni-
fies deep learning with scalable data science pipelines to
automate cyber attack detection in real time. The proposed
system leverages data ingestion tools and real-time processing
frameworks to build a continuous flow of network data into
an LSTM-based detection model. Key contributions of this
research include: (1) the design of a scalable end-to-end
pipeline architecture for network intrusion detection, (2) the
implementation of an LSTM model tailored for sequence-
based anomaly detection, and (3) an experimental evaluation
using the CICIDS2017 dataset that demonstrates a detection
accuracy of 96.2% while significantly reducing false alarms.

By integrating advanced deep learning methodologies with
practical data engineering tools, this research contributes a
novel, adaptable, and scalable solution to the ongoing chal-
lenge of cyber attack detection in high-speed digital environ-
ments. The proposed approach aims to bridge the gap between
theoretical model performance and real-world operational de-
ployment, enhancing the resilience of critical systems against
emerging cyber threats.

II. RELATED WORK

Intrusion Detection Systems (IDS) have evolved signifi-
cantly over the past decades, with machine learning and deep
learning techniques now playing a central role in improving
detection accuracy and adaptability. Early approaches to IDS
heavily relied on traditional machine learning algorithms such
as Support Vector Machines (SVM), Decision Trees (DT),
and Random Forests (RF) for identifying abnormal traffic
patterns [16], [17]. These methods were effective in detecting
known attack types; however, they often struggled with fea-
ture engineering, scalability, and adapting to evolving threats
[18]. While ensemble models like Random Forests improved
classification performance by aggregating multiple decision
trees, they still required manual feature selection and were not
optimized for temporal or sequential patterns found in network
data [19].
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The emergence of deep learning techniques has introduced
powerful new paradigms for intrusion detection by enabling
automatic feature extraction and learning complex, non-linear
patterns directly from raw data. Convolutional Neural Net-
works (CNNs) have been widely used to model spatial rela-
tionships among features in network traffic [20], while Long
Short-Term Memory (LSTM) networks have shown superior
performance in capturing temporal dependencies and detecting
anomalies in sequential data streams [21], [22]. Autoencoders,
both standard and variational, have also been employed to
detect novel attack types by learning the latent distribution
of normal traffic and identifying deviations from it [23]. Deep
belief networks (DBNs) and hybrid DL models have further
enhanced detection capabilities across multiple datasets [24].

Parallel to the advancements in modeling techniques, the de-
velopment of scalable and real-time data science pipelines has
become increasingly important for operational deployment of
IDS. Stream processing platforms like Apache Kafka, Apache
Flink, and Apache Spark enable efficient real-time ingestion,
transformation, and processing of high-throughput network
traffic [25], [26]. Visualization and logging frameworks such
as the ELK (Elasticsearch, Logstash, Kibana) stack are widely
adopted for monitoring, alerting, and post-analysis of intrusion
data [27]. Despite the maturity of these tools, there exists a
significant gap in the integration of deep learning models into
production-grade pipelines capable of handling continuous
data streams at scale [28].

Several studies have attempted to bridge this gap by com-
bining machine learning models with streaming frameworks.
For instance, the work in [29] integrates a random forest-
based classifier with Apache Spark Streaming for real-time
detection, but lacks the dynamic adaptability offered by deep
learning models. Other studies have explored batch training
of deep models on historical datasets, such as CICIDS2017
and UNSW-NB15, but fall short of addressing deployment
challenges in real-time environments [30].

In summary, while deep learning models offer superior de-
tection accuracy and robustness compared to classical machine
learning, their application in real-time, scalable environments
remains limited. This research seeks to fill this void by
integrating LSTM-based deep learning with a fully automated,
scalable data pipeline capable of real-time attack detection,
thus advancing the state-of-the-art in cyber threat defense.

III. PROPOSED FRAMEWORK

This section presents the architecture and design of the
proposed automated cyber attack detection framework, which
integrates deep learning with scalable data science pipelines
for real-time monitoring and response.

A. Architecture Overview

The framework consists of four key components: data
ingestion, preprocessing, deep learning-based detection, and
deployment with an alerting mechanism. Figure 1 illustrates
the overall system architecture.

1) Data Ingestion: The first stage involves collecting data
from various network sources. This includes real-time packet
capture using tools such as tcpdump or Wireshark, and
log collectors aggregating data from firewalls, routers, and
application logs. The ingestion pipeline leverages distributed
streaming platforms such as Apache Kafka to handle high-
throughput and low-latency data flows, ensuring continuous
input of network traffic and system logs for analysis.

2) Preprocessing: Raw network data is inherently noisy
and high-dimensional, necessitating rigorous preprocessing be-
fore model input. The preprocessing pipeline performs Extract-
Transform-Load (ETL) operations to clean and structure data.
Key tasks include normalization to standardize feature scales,
feature extraction to identify relevant attributes such as packet
size, time intervals, protocol types, and payload content, and
encoding categorical variables. This pipeline is designed using
Apache Spark to enable distributed processing and scalability.

3) Deep Learning Model: At the core of the framework lies
the deep learning model responsible for classifying network
traffic as benign or malicious. We employ a hybrid architecture
combining Long Short-Term Memory (LSTM) networks to
capture temporal dependencies in sequential network data, and
Convolutional Neural Networks (CNN) to extract spatial pat-
terns in features. This hybrid model enables robust detection
of both known and unknown attack signatures. Additionally,
Transformer-based attention mechanisms may be incorporated
to enhance context-awareness in feature representations.

4) Deployment and Alert System: The trained model is
deployed using a model serving infrastructure, such as Tensor-
Flow Serving or TorchServe, facilitating real-time inference on
streaming data. The system integrates an alerting mechanism
that triggers notifications upon detection of suspicious activ-
ities. Alerts can be configured to propagate via dashboards,
email, or integration with Security Information and Event
Management (SIEM) tools, enabling timely incident response.

Fig. 1: System Architecture of the Proposed Cyber Attack
Detection Framework

The proposed framework integrates scalable data pipelines
with advanced deep learning models to enable automated,
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real-time cyber attack detection. The modular design ensures
flexibility to incorporate new data sources, preprocessing
techniques, and model architectures. This end-to-end system
addresses challenges of accuracy, scalability, and timely threat
response in modern cybersecurity environments.

IV. DATASET AND EXPERIMENTAL SETUP

A. Dataset Description

To evaluate the performance of the proposed cyber attack
detection framework, we utilize the CICIDS2017 dataset
[16], which is widely regarded for its comprehensive and
realistic representation of contemporary network traffic and
attack scenarios. The dataset includes various attack types
such as Distributed Denial of Service (DDoS), Brute Force,
Infiltration, and Botnet, alongside normal traffic flows. We also
conducted supplementary experiments using the NSL-KDD
[17] and UNSW-NB15 [18] datasets to validate the general-
izability of our approach across different data distributions.

B. Preprocessing Steps

Raw network traffic and logs from these datasets undergo
several preprocessing stages to prepare the data for deep
learning model training. Initially, missing or corrupted records
are removed to ensure data quality. Numerical features are
normalized using Min-Max scaling to a range between 0 and
1, which facilitates faster convergence during training. Cate-
gorical features such as protocol type and service are encoded
using one-hot encoding to convert them into machine-readable
formats. Additionally, temporal features are extracted to cap-
ture sequential dependencies vital for models like LSTM. The
final feature set is organized into sequences of fixed time
windows to provide temporal context to the model.

C. Model Hyperparameters

The hybrid LSTM-CNN model is configured with carefully
selected hyperparameters optimized via grid search and cross-
validation. Table I summarizes the key hyperparameters used
during training.

TABLE I: Model Hyperparameters

Hyperparameter Value
LSTM Layers 2 layers, 64 units each
CNN Filters 32 filters, kernel size 3
Activation Function ReLU (CNN), Tanh (LSTM)
Dropout Rate 0.3
Batch Size 128
Learning Rate 0.001
Optimizer Adam
Epochs 50
Sequence Length 100 timesteps

D. Training and Testing Split

For the CICIDS2017 dataset, we partition the data into
training and testing subsets using a stratified split to maintain
class distribution. Approximately 70% of the data is used
for training, while the remaining 30% serves as the test set.
Similar splits are applied for NSL-KDD and UNSW-NB15

datasets to ensure fair evaluation. Cross-validation with five
folds is employed during training to mitigate overfitting and
assess model robustness.

E. Tools and Environment

The experimental setup employs Python 3.9 as the primary
programming language. Deep learning models are imple-
mented using TensorFlow 2.8 and PyTorch 1.11 frameworks,
chosen for their flexibility and extensive support for sequence
and convolutional networks. Data ingestion and preprocessing
leverage Apache Kafka and Apache Spark streaming frame-
works to simulate real-time, high-throughput data environ-
ments. Experiments are conducted on a workstation equipped
with NVIDIA RTX 3080 GPUs to accelerate model training
and inference.

Fig. 2: Experimental Workflow for Dataset Preparation and
Model Training

V. RESULTS AND DISCUSSION

A. Performance Metrics

The proposed deep learning framework was evaluated using
standard classification metrics to comprehensively assess its
detection capability. These metrics include Accuracy, Preci-
sion, Recall, F1-score, and ROC-AUC (Receiver Operating
Characteristic - Area Under Curve). Accuracy reflects the
overall correctness of the model, while Precision and Re-
call indicate the model’s ability to correctly identify attacks
and minimize false positives and false negatives respectively.
The F1-score balances Precision and Recall, and ROC-AUC
measures the model’s discrimination threshold-independent
performance.

Table II summarizes the obtained results on the CI-
CIDS2017 dataset. The proposed LSTM-CNN hybrid model
achieved an accuracy of 96.2%, with a precision of 94.8%,
recall of 95.5%, and an F1-score of 95.1%. The ROC-AUC
score was 0.978, indicating strong discriminative power be-
tween benign and malicious traffic.
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TABLE II: Performance Metrics of Proposed Model on CI-
CIDS2017 Dataset

Metric Value (%)
Accuracy 96.2
Precision 94.8
Recall 95.5
F1-Score 95.1
ROC-AUC 97.8

B. Comparative Analysis

To validate the effectiveness of our integrated deep learning
pipeline, we performed a comparative analysis against tradi-
tional machine learning baselines including Support Vector
Machines (SVM), Random Forest (RF), and Gradient Boosting
Machines (GBM). Table III presents the performance compar-
ison on the same test split of CICIDS2017.

The baseline models exhibited respectable accuracy scores,
with Random Forest reaching up to 89.4% accuracy. However,
these models lagged behind in recall and F1-score, particularly
struggling to identify subtle or evolving attack patterns. The
proposed LSTM-CNN model consistently outperformed all
baselines across every metric, demonstrating superior feature
extraction and sequence learning capabilities that are crucial
for capturing the temporal dynamics of network traffic.

C. Detection of Unknown (Zero-Day) Attacks

An important aspect of modern intrusion detection is the
ability to identify previously unseen, or zero-day, attacks.
Traditional signature-based or static rule-based IDS struggle
with such evolving threats due to their reliance on predefined
patterns. Our deep learning framework leverages unsuper-
vised pretraining and sequence modeling to generalize beyond
known attack signatures.

Evaluation on a held-out subset containing simulated zero-
day attack variants showed that the proposed model maintained
a recall of 91.7%, significantly outperforming classical base-
lines that dropped below 75%. This indicates the framework’s
robustness in recognizing anomalous behaviors even without
prior exposure, facilitated by the model’s ability to learn high-
level feature representations and temporal dependencies.

D. Discussion

The experimental results confirm that integrating deep
learning models within a scalable data pipeline substantially
enhances intrusion detection performance. The LSTM-CNN
architecture’s strength lies in its capacity to capture both
spatial and temporal features of network traffic, while the
automated pipeline ensures timely ingestion and processing
of large-scale data streams. Additionally, the model’s superior
recall for zero-day attacks highlights its practical applicability
in dynamic cybersecurity environments where adaptability is
paramount.

Despite these promising results, challenges remain in fur-
ther reducing false positive rates and optimizing resource
consumption during deployment. Future work will focus on

incorporating explainability techniques to aid security analysts
in understanding alerts and refining model decisions.

VI. CONCLUSION

This research presents an integrated deep learning frame-
work for automated cyber attack detection, combining ad-
vanced sequence modeling with a scalable data science
pipeline. The proposed system demonstrated strong perfor-
mance across multiple key metrics, achieving an accuracy of
96.2% on the CICIDS2017 dataset while maintaining high pre-
cision, recall, and F1-score values. Through comparative anal-
ysis, the framework outperformed traditional machine learn-
ing baselines, highlighting the advantages of deep learning
architectures such as LSTM and CNN in capturing complex
temporal and spatial patterns in network traffic data.

Beyond improved accuracy, the system advances current
Intrusion Detection Systems (IDS) by addressing critical oper-
ational challenges including real-time processing, automation,
and scalability. The seamless integration of data ingestion,
preprocessing, and model serving within a unified pipeline
enables continuous monitoring and rapid threat detection in
dynamic network environments. Additionally, the model’s
demonstrated robustness against zero-day attacks reinforces its
practical relevance in mitigating emerging cyber threats.

Overall, this work contributes a comprehensive and de-
ployable solution that bridges the gap between deep learning
research and production-grade cybersecurity applications. Its
strengths lie in delivering accurate, automated, and scalable in-
trusion detection capabilities that can significantly enhance the
defense posture of modern networks. Future efforts will aim
to optimize resource efficiency and incorporate interpretability
features to further support security analysts in proactive threat
mitigation.

VII. FUTURE WORK

Building upon the current framework, several promising
directions can be pursued to further enhance the effective-
ness and applicability of automated cyber attack detection
systems. One key area of future research is the incorporation
of Explainable Artificial Intelligence (XAI) techniques. By
integrating XAI methods, the system can provide interpretable
insights into model decisions, enabling cybersecurity analysts
to better understand the rationale behind alerts and reduce false
positives. This transparency is crucial for building trust and fa-
cilitating rapid incident response in operational environments.

Another important extension involves deploying the pro-
posed deep learning models on edge and Internet of Things
(IoT) devices. Given the proliferation of connected devices and
the increasing volume of network traffic at the edge, enabling
lightweight, real-time intrusion detection directly on these de-
vices can reduce latency and dependence on centralized cloud
resources. Research into model compression, quantization, and
energy-efficient architectures will be essential to achieve this
goal without compromising detection accuracy.

Ensuring robustness against adversarial attacks also repre-
sents a vital future challenge. Attackers may attempt to evade
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TABLE III: Comparative Performance of Baseline Models vs. Proposed Framework

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
SVM 85.6 83.2 81.4 82.3
Random Forest 89.4 87.5 86.0 86.7
Gradient Boosting 88.7 86.1 85.2 85.6
Proposed LSTM-CNN 96.2 94.8 95.5 95.1

detection by crafting inputs designed to fool machine learning
models. Developing adversarial defense mechanisms, such as
adversarial training and anomaly detection augmented with
uncertainty estimation, can strengthen the resilience of the
detection pipeline and maintain its reliability under hostile
conditions.

Finally, integrating the entire detection workflow with mod-
ern MLOps (Machine Learning Operations) pipelines will
facilitate continuous model training, validation, deployment,
and monitoring. This integration can automate updates in
response to evolving threats, improve model lifecycle man-
agement, and streamline collaboration between data scientists
and security teams. Incorporating feedback loops from live
detection outcomes can further optimize system performance
over time.

Collectively, these future directions aim to advance the
state-of-the-art in cyber attack detection by enhancing in-
terpretability, scalability, security, and operational efficiency,
thereby supporting more robust and adaptive cybersecurity
infrastructures.
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[30] R. Choraś, A. Kozik, and M. Renkewitz, “Machine Learning-Based
Detection and Classification for Cybersecurity: State-of-the-Art and
Challenges,” *Journal of Universal Computer Science*, vol. 26, no. 4,
pp. 517–540, 2020.

� https://jsiar.com
# editor@jsiar.com

© 2025 JSIAR


