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Abstract—Real-time object detection serves as a foundational
capability in autonomous robotic systems, directly impacting
their ability to perceive, navigate, and interact with dynamic
environments. Traditional 2D vision-based approaches, while
computationally efficient, often struggle with challenges such
as depth ambiguity, occlusion, and poor spatial understanding,
particularly in unstructured or cluttered scenes. These limitations
hinder the reliability and precision required for critical robotic
applications.

To address these shortcomings, this study explores the inte-
gration of 3D vision into the object detection pipeline, aiming to
enhance spatial perception and detection accuracy. The proposed
framework leverages stereo vision and depth mapping techniques
to enrich visual data with depth cues, thereby enabling more
informed decision-making in real-time contexts. A fusion-based
architecture is developed, combining RGB input with correspond-
ing 3D point cloud or depth map representations, and imple-
mented using state-of-the-art detection models such as YOLOvVS
and optimized through hardware-accelerated platforms.

Experimental evaluations conducted on both benchmark
datasets and real-world robotic scenarios demonstrate significant
improvements in detection accuracy and robustness, particularly
in depth-critical tasks such as obstacle avoidance and object
manipulation. The integration of 3D vision not only enhances
detection fidelity but also supports more resilient operation under
variable lighting and environmental conditions. These findings
underscore the potential of 3D vision-enhanced systems to elevate
the capabilities of modern robotics, paving the way for more
intelligent and context-aware autonomous agents.
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I. INTRODUCTION

Real-time object detection is a cornerstone in the field
of robotics, enabling autonomous systems to perceive and
interact with their environments effectively. Applications such
as autonomous navigation, manipulation, and human-robot
interaction rely heavily on the ability to detect and localize
objects promptly and accurately [1], [2]. Traditional object
detection methods primarily utilize two-dimensional (2D) vi-
sual data, which, while computationally efficient, often fall
short in complex and dynamic environments due to inherent
limitations.

One significant challenge with 2D vision systems is the
lack of depth information, leading to difficulties in accurately
interpreting spatial relationships between objects. This limi-
tation becomes pronounced in scenarios involving occlusions,
varying scales, and cluttered backgrounds, where 2D systems
struggle to distinguish between overlapping or partially visible
objects [3], [4]. Additionally, changes in lighting conditions

and object orientations further exacerbate the shortcomings
of 2D-based detection, affecting the reliability of robotic
perception in real-world applications [5], [6].

The integration of three-dimensional (3D) vision into object
detection frameworks offers a promising solution to these
challenges. By incorporating depth cues and spatial infor-
mation, 3D vision enhances the robot’s understanding of its
environment, allowing for more accurate object localization
and scene interpretation [7], [8]. Techniques such as stereo
imaging, structured light, and time-of-flight sensors provide
rich depth data, enabling robots to perceive their surroundings
in a manner akin to human vision [9], [10].

In this study, we propose a novel approach that integrates
3D vision into real-time object detection systems for robotics.
Our framework leverages stereo imaging to capture depth
information, which is then fused with traditional RGB data
to enhance detection accuracy. We employ advanced deep
learning models, including YOLOv8 and Faster R-CNN, op-
timized for real-time performance on embedded platforms.
The integration of 3D data aims to address the limitations of
2D systems, particularly in handling occlusions and complex
spatial arrangements.

The main contributions of this paper are as follows:

o We present a comprehensive analysis of the limitations
associated with 2D vision systems in robotic object
detection tasks.

« We develop a 3D vision integration framework that com-
bines depth sensing with state-of-the-art object detection
models, optimized for real-time performance.

« We conduct extensive experiments on benchmark datasets
and real-world scenarios to evaluate the effectiveness of
the proposed system, demonstrating significant improve-
ments in detection accuracy and robustness.

The remainder of this paper is organized as follows: Section
IT reviews related work in the domains of object detection
and 3D vision integration in robotics. Section III details the
methodology, including system architecture and data fusion
techniques. Section IV describes the implementation specifics,
encompassing hardware and software components. Section V
presents the experimental setup and results, followed by a
discussion in Section VI. Finally, Section VII concludes the
paper and outlines directions for future research.

Journal of Scientific Innovation and Advanced Research © 2025 JSIAR

ISSN: XXXX-XXXX



Journal of Scientific Innovation and Advanced Research (JSIAR) 2025

II. RELATED WORK
A. Real-Time Object Detection Methods

Real-time object detection is a critical component in
robotics, enabling systems to perceive and interact with dy-
namic environments. Among the prominent methods, the You
Only Look Once (YOLO) series has gained significant atten-
tion for its balance between speed and accuracy. The original
YOLO model introduced a unified architecture that processes
images in real-time, achieving 45 frames per second (fps)
[21]. Subsequent iterations, such as YOLOv3 and YOLOv4,
improved detection accuracy and speed, making them suitable
for various applications [22]. The latest version, YOLOV10,
addresses the limitations of non-maximum suppression (NMS)
by introducing a consistent dual assignment strategy, enhanc-
ing both performance and efficiency [23].

Another notable method is the Single Shot MultiBox Detec-
tor (SSD), which performs object detection in a single pass,
offering a good trade-off between speed and accuracy [24].
SSD has been improved with depth-wise separable convolu-
tions to reduce computational complexity while maintaining
detection performance [25].

B. 3D Vision in Robotics

Integrating 3D vision into robotics enhances spatial under-
standing, crucial for tasks like navigation and manipulation.
Stereo vision systems extract depth information by comparing
images from two cameras, enabling depth perception similar
to human vision [26]. LiDAR sensors provide precise distance
measurements by emitting laser pulses, creating detailed 3D
maps of the environment. LiDAR’s robustness in various light-
ing and weather conditions makes it valuable for autonomous
systems [27].

RGB-D cameras, such as the Intel RealSense, capture both
color and depth information, facilitating real-time 3D recon-
struction and object recognition. These cameras have been
utilized in applications ranging from human-computer interac-
tion to robotic navigation [28]. The FusionVision framework
combines YOLO with RGB-D data to achieve accurate 3D
object segmentation and reconstruction.

C. Integration Strategies

Combining data from multiple sensors enhances the re-
liability and accuracy of robotic perception. Sensor fusion
techniques integrate information from cameras, LiDAR, and
inertial measurement units (IMUs) to compensate for indi-
vidual sensor limitations. For instance, integrating LiDAR
and camera data improves object localization and mapping
accuracy [27].

Simultaneous Localization and Mapping (SLAM) systems
benefit from multi-sensor fusion. Incorporating visual, LiDAR,
and inertial data enables robust mapping in dynamic envi-
ronments. Advanced SLAM frameworks utilize factor graph
optimization and loop closure detection to maintain map
consistency [29]. Semantic SLAM further enhances mapping
by integrating object detection and classification, providing a
richer understanding of the environment [30].

D. Identified Gaps

Despite advancements in real-time object detection and 3D
vision integration, challenges remain. Many existing systems
struggle with occlusions, dynamic environments, and varying
lighting conditions. Moreover, integrating multiple sensors
increases system complexity and computational requirements.
There is a need for efficient frameworks that seamlessly
combine 2D and 3D data to enhance object detection accuracy
without compromising real-time performance.

TABLE I: Comparison of Real-Time Object Detection Meth-
ods

Method Speed (fps) | Accuracy (mAP) | 3D Support
YOLOv3 45 33.0% No
YOLOv4 62 43.5% No
YOLOv10 70 50.1% No
SSD 59 41.2% No
FusionVision 30 48.7% Yes

III. METHODOLOGY
A. System Architecture

The proposed robotic system integrates advanced sensing
and computing components to facilitate real-time object de-
tection enhanced by 3D vision. The architecture comprises
the following key elements:

+ Sensing Module: Utilizes the ZED X stereo camera [31]
and the Orbbec Gemini 335L RGB-D camera [32] to cap-
ture high-resolution RGB images and depth information.

o Computing Unit: Employs an NVIDIA Jetson AGX
Xavier for onboard processing, leveraging its GPU capa-
bilities for deep learning inference and parallel processing
tasks.

o Communication Interface: Implements ROS 2 middle-
ware for efficient data exchange between sensors and
processing units, ensuring modularity and scalability.

B. 3D Vision Integration

1) Data Acquisition and Preprocessing: Depth data is
acquired from the stereo and RGB-D cameras. The raw depth
maps undergo preprocessing steps including noise filtering,
hole filling, and alignment with RGB images to ensure accu-
rate correspondence between color and depth information.

2) Point Cloud Generation and Fusion: Preprocessed depth
maps are converted into point clouds representing the 3D
structure of the environment. These point clouds from different
sensors are fused using a voxel grid filter to reduce redundancy
and computational load, resulting in a unified and efficient 3D
representation.

3) Enhancement of Object Detection: The integrated 3D
data enhances object detection by providing spatial context,
enabling the differentiation of objects based on depth, and
improving detection accuracy in scenarios with occlusions or
overlapping objects. This fusion aids in precise localization
and size estimation of detected objects.
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Fig. 1: Overview of sensor fusion framework integrating camera, LiDAR, and IMU data for enhanced object detection.
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Fig. 2: System architecture integrating stereo and RGB-D
cameras with computing units for real-time object detection.

C. Real-Time Object Detection Pipeline

1) Detection Model: YOLOvS: The YOLOv8 model [33]
is employed for its balance between speed and accuracy in
real-time object detection tasks. It processes input images in
a single pass, enabling rapid inference suitable for dynamic
robotic applications.

2) Integration with 3D Data: The 2D bounding boxes
generated by YOLOvVS are projected onto the 3D point cloud
to extract depth information corresponding to each detected
object. This projection facilitates the estimation of the object’s
position in 3D space, enhancing the robot’s understanding of
its environment.
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Fig. 3: Process of integrating 3D vision data to enhance object
detection accuracy and spatial awareness.

3) Optimization Techniques: To achieve real-time perfor-
mance, several optimization strategies are implemented:

o« Model Quantization: Reduces the model size and in-
ference time by converting weights to lower precision
without significant loss in accuracy.

+ Hardware Acceleration: Leverages the GPU capabilities
of the NVIDIA Jetson AGX Xavier for parallel processing
and accelerated computation.

« Efficient Data Handling: Utilizes ROS 2 for asyn-
chronous data processing and communication, minimiz-
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ing latency and ensuring timely responses.

TABLE II: Performance Comparison of Object Detection
Models

Model FPS | mAP@0.5 | 3D Integration
YOLOVS 60 50.2% Yes
Faster R-CNN 7 42.7% No
SSD 22 37.4% No
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Fig. 4: Real-time object detection pipeline
YOLOv8 with 3D vision data.
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IV. IMPLEMENTATION

The implementation phase encompasses both hardware con-
figuration and software integration to realize the proposed 3D
vision-based real-time object detection system in robotics. A
careful orchestration of sensors, embedded computing, and
software tools ensures optimal performance and modularity.

A. Hardware Setup

The experimental platform is built around a mobile robotic
unit equipped with the following components:

o Sensing Devices: A ZED X stereo camera and Orbbec
Gemini 335L RGB-D sensor are mounted on the robot to
provide synchronized depth and color information.

+ Embedded System: An NVIDIA Jetson Nano Developer
Kit is used as the primary embedded system. It offers a
quad-core ARM Cortex-A57 CPU and 128-core Maxwell
GPU, which are sufficient for running lightweight deep
learning models with moderate efficiency.

o Control Interface: The robotic platform includes an
L298N motor driver module and a rechargeable Li-ion

battery for autonomous navigation, integrated through a
custom ROS-based controller.

TABLE III: Hardware Specifications

Component
Stereo Camera
RGB-D Camera
Embedded Unit
Motor Controller
Power Supply

Specification

ZED X, Dual 4MP, 2K resolution, 110° FOV
Orbbec Gemini 335L, 1280x800, 30 FPS
Jetson Nano, 4 GB RAM, 128-core GPU
L298N Dual H-Bridge

11.1V 2200 mAh Li-ion Battery

B. Software Stack

A robust software stack is deployed for real-time data
processing, neural inference, and control orchestration:

¢ Operating System: Ubuntu 20.04 with ROS Noetic
middleware for inter-module communication.

o Computer Vision: OpenCV 4.5.2 is used for image
preprocessing, camera calibration, and visual debugging.

o Deep Learning Framework: PyTorch 2.0 enables effi-
cient deployment of the YOLOvVS8 model, optimized for
GPU inference.

« Visualization and Mapping: RViz and SLAM toolkits
are incorporated for real-time monitoring and environ-
ment representation.

C. Training Dataset

For object detection, the YOLOv8 model is initially pre-
trained on the COCO dataset. To tailor it to domain-specific
tasks, a custom dataset comprising over 5,000 images of
indoor and outdoor robotic environments is curated. Images
are annotated using the Labellmg tool in YOLO format,
capturing diverse lighting conditions and occlusion scenarios.

TABLE IV: Custom Dataset Overview

Category Number of Images | Instances
Pedestrian 1,200 4,500
Package Box 1,000 3,800
Sign Boards 1,100 4,100
Vehicles 1,200 4,750
Miscellaneous Objects 500 2,300
Total 5,000 19,450

D. Parameter Tuning and Performance Enhancements

To ensure optimal real-time performance on the Jetson
Nano, several model tuning strategies are adopted:

« Batch Size Optimization: Training batch size is fixed at
16 to balance GPU load and memory utilization.

« Learning Rate Scheduling: A cosine annealing strategy
is applied to gradually reduce the learning rate, avoiding
local minima during convergence.

« Quantization: Post-training quantization to FP16 is im-
plemented to accelerate inference with minimal accuracy
degradation.

« Data Augmentation: Random flips, color jittering, and
affine transformations are applied to augment training
robustness.
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The final deployment model achieves an inference rate of 28
FPS on the Jetson Nano with 48.6% mAP@0.5 on the custom
dataset, demonstrating a suitable balance between speed and
accuracy in dynamic robotic environments.

V. EXPERIMENTAL RESULTS

The experimental evaluation of the proposed 3D-enhanced
object detection system is conducted under various conditions,
assessing both performance and accuracy in real-world robotic
environments. Several metrics are used to evaluate the system’s
effectiveness, including mean Average Precision (mAP), In-
tersection over Union (IoU), Frames Per Second (FPS), and
latency.

A. Evaluation Metrics

To evaluate the performance of the object detection system,
the following metrics are employed:

o Mean Average Precision (mAP): Measures the average
precision across all object categories, providing a com-
prehensive metric of detection accuracy.

« Intersection over Union (IoU): Assesses the overlap
between predicted and ground truth bounding boxes,
where higher values indicate better alignment.

o Frames Per Second (FPS): Indicates the speed of the
object detection system, reflecting its real-time capability.

« Latency: Measures the time delay between capturing an
image and generating the corresponding object detection
output.

B. Comparison of 2D vs. 3D-Enhanced Detection

The performance of the proposed 3D-enhanced object de-
tection model is compared against a baseline 2D YOLOvVS
model. The key comparison metrics include mAP, IoU, and
FPS. Table V summarizes the results of both systems.

TABLE V: Comparison of 2D vs. 3D-Enhanced Detection
Performance

application requirements, where higher resolution is beneficial
for environments with dense objects, while lower resolution is
suitable for faster, less demanding tasks.

D. Real-World Testing: Obstacle Detection and Object Track-
ing

In real-world tests, the system is evaluated on its ability to
detect obstacles and track objects in dynamic environments.
The robotic platform is tasked with navigating a room with
moving obstacles and static objects.

« Obstacle Detection: The system demonstrated excellent
performance in detecting obstacles at various distances,
even in environments with partial occlusions. The integra-
tion of 3D data allowed for accurate distance estimation,
facilitating effective collision avoidance.

o Object Tracking: The object tracking module was able
to follow objects with high accuracy, leveraging both 2D
and 3D information to maintain object localization despite
rapid movement.

Qualitative visual results are shown in Figure 6. The images
display real-time detection and tracking of objects, where the
bounding boxes are overlaid on both the RGB image and the
corresponding depth map.

E. Discussion

The experimental results highlight the effectiveness of the
proposed 3D-enhanced object detection system for robotics
applications. While the integration of 3D vision enhances
detection accuracy, especially in complex environments with
occlusions, it comes at the cost of slightly reduced processing
speed and increased latency. However, these trade-offs are
justified given the system’s improved robustness in real-world
scenarios.

Further optimization, such as model quantization and hard-
ware acceleration, can mitigate the performance drop in terms
of FPS and latency. Future work may focus on real-time
optimization strategies, such as edge computing or model

runing, to achieve faster processing without compromising

Metric 2D YOLOVS | 3D-Enhanced YOLOvVS | Improvement
mAP@0.5 45.3% 50.2% +4.9%
IoU 0.69 0.74 +7.2%
FPS 60 55 -8.3%
Latency (ms) 20 25 +25%

accuracy.

VI. DISCUSSION

The results in Table V demonstrate that integrating 3D
vision significantly improves detection accuracy (measured
by mAP and IoU), but at a slight cost to inference speed.
This trade-off is acceptable given the increased precision in
complex environments with occlusions and depth ambiguities.

C. Speed vs. Accuracy Trade-off

To further analyze the trade-off between speed and accuracy,
experiments are conducted with varying resolutions and model
configurations. Figure 5 illustrates the relationship between
FPS and mAP for different settings.

As shown in Figure 5, increasing the image resolution
improves detection accuracy but reduces FPS. The trade-
off curve highlights the need for optimization depending on

In this section, we analyze the improvements brought by the
integration of 3D vision in real-time object detection, discuss
failure cases and limitations, and evaluate the computational
complexity of the system. Furthermore, we explore potential
enhancements and generalization of the approach to other
robotics tasks.

A. Improvements Due to 3D Vision

The integration of 3D vision significantly enhances the
performance of the object detection system, particularly in
complex environments where depth information is crucial. By
providing spatial awareness, 3D vision systems allow the robot
to better understand the surrounding environment, enabling
it to detect objects that are partially occluded or at varying
distances with higher precision.
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Fig. 5: Speed vs. Accuracy Trade-off in Real-Time Object Detection Using YOLOvVS
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Fig. 6: Real-world testing: obstacle detection and object
tracking in dynamic environments. Bounding boxes indicate
detected objects in the RGB image and 3D space.

One of the key improvements is the increased accuracy in
object localization, which is especially beneficial in cluttered
or dynamic environments. The depth cues provided by stereo
vision or RGB-D cameras enable more accurate object posi-
tioning and help resolve ambiguities that commonly arise in
2D vision systems. For instance, depth information aids in
distinguishing between objects that overlap in the 2D image
plane but are separated in 3D space, thus improving the overall
detection accuracy as demonstrated by the mAP and IoU
improvements in our experimental results.

Additionally, the system can now detect obstacles and track
moving objects more effectively, as 3D data provides informa-
tion about object proximity and movement in the environment.
This feature is vital for robotics applications such as navigation
and interaction in dynamic and cluttered spaces.

B. Failure Cases and Limitations

Despite the improvements, the proposed system is not
without its limitations. One of the main failure cases occurs in
environments with poor depth information, such as when the
RGB-D camera is faced with low-texture surfaces or reflective
objects. In such scenarios, the depth maps can become noisy
or incomplete, leading to inaccuracies in object detection.

Moreover, while the system performs well in ideal condi-
tions, its robustness can degrade in extreme lighting condi-
tions, such as very bright or dark environments. Stereo vision
systems, in particular, are sensitive to lighting variations,
which can affect depth estimation and object localization.

Another limitation is the computational complexity of
integrating 3D vision with real-time object detection. The
increased data processing requirements of 3D information,
particularly depth maps and point clouds, can strain the
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computational resources, leading to slower processing times
and higher latency. While our system demonstrates real-time
performance, the trade-off between speed and accuracy is
evident in the reduced FPS and increased latency observed
during experiments with high-resolution images.

C. Computational Complexity and Real-Time Feasibility

The integration of 3D vision adds a significant computa-
tional burden to the object detection pipeline. The process
of acquiring, preprocessing, and fusing 3D data (e.g., point
clouds or depth maps) requires additional processing steps
compared to standard 2D image processing. While modern
embedded systems like the Jetson Nano can handle these
tasks, the computational load still limits the system’s ability
to maintain high FPS and low latency, especially with more
complex models like YOLOVS.

Table VI presents the comparison of computational require-
ments for 2D vs. 3D object detection in terms of FPS, latency,
and memory usage.

TABLE VI: Computational Complexity Comparison: 2D vs.
3D-Enhanced Object Detection

Metric 2D Object Detection | 3D-Enhanced Detection
FPS 60 50
Latency (ms) 20 30
Memory Usage (MB) 150 200

From Table VI, we observe that while the 3D-enhanced
detection system improves accuracy, it comes at the cost of
reduced FPS, increased latency, and higher memory usage.
Real-time feasibility depends on the hardware capabilities,
and further optimizations, such as model pruning or hardware
acceleration, could help mitigate these issues.

D. Potential Enhancements and Generalization

There are several potential enhancements that could improve
both the accuracy and real-time feasibility of the system. One
such enhancement is the use of more advanced sensor fusion
techniques, combining data from multiple sources such as
LiDAR, stereo vision, and RGB cameras. By leveraging the
complementary strengths of different sensors, it is possible to
achieve more robust object detection, especially in challenging
environments with occlusions or poor lighting.

Furthermore, optimizing the object detection model for
edge computing platforms, such as using model quantization
or deploying specialized hardware accelerators (e.g., GPUs
or TPUs), could significantly reduce latency and increase
FPS. These optimizations would enable the system to operate
effectively in real-time robotic applications that require both
high accuracy and fast response times.

In addition, this approach can be generalized to other
robotics tasks beyond object detection. For example, the inte-
gration of 3D vision can improve robotic manipulation, where
depth information is critical for grasping objects accurately.
Similarly, in simultaneous localization and mapping (SLAM)
tasks, 3D data can help enhance the robot’s map-building ca-
pabilities, particularly in unknown or dynamic environments.

Lastly, incorporating advanced deep learning techniques,
such as Transformer-based models or attention mechanisms,
could further boost the system’s ability to handle more com-
plex tasks, such as multi-object tracking and fine-grained
recognition, in real-time.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a comprehensive approach
to enhancing real-time object detection in robotics by integrat-
ing 3D vision. The integration of 3D data, particularly through
stereo vision and RGB-D cameras, significantly improved
the accuracy and robustness of object detection systems.
By providing spatial awareness and depth cues, 3D vision
resolved many of the limitations inherent in traditional 2D
vision systems, such as depth ambiguity and occlusions. The
proposed method demonstrated superior object localization
and tracking capabilities, particularly in dynamic and cluttered
environments, making it a promising solution for real-world
robotic applications.

Our findings show that the integration of 3D vision, while
computationally demanding, provides a substantial boost in
detection accuracy, as evidenced by the improved mean Aver-
age Precision (mAP) and Intersection over Union (IoU) scores.
However, the added computational complexity of processing
3D data posed challenges in terms of real-time performance.
Despite this, the system achieved real-time object detection
by optimizing the pipeline and leveraging efficient hardware,
such as embedded systems like the Jetson Nano. These results
indicate that 3D vision-based object detection can be deployed
effectively in robotics, given the right computational resources.

The contributions of this paper include the development of
an integrated 3D vision-enhanced object detection pipeline and
the demonstration of its real-time performance on a robotic
platform. This work paves the way for more accurate and
reliable perception systems in robotics, particularly for au-
tonomous navigation and interaction in complex environments.

A. Future Work

While the results of this work are promising, several avenues
for future research remain. One key direction is the integration
of the object detection system with Simultaneous Localization
and Mapping (SLAM) algorithms. SLAM techniques, which
enable robots to build maps of unknown environments while
simultaneously tracking their location, could greatly benefit
from the addition of 3D vision. The spatial awareness provided
by depth cues would enhance the robot’s ability to navigate in
unstructured environments, especially in scenarios where 2D
cameras fail to provide sufficient information.

Another important area for future work is the exploration of
multi-modal sensing. By integrating additional sensors, such
as LiDAR, ultrasonic sensors, or inertial measurement units
(IMUs), the system could become even more robust to environ-
mental changes and uncertainties. Multi-modal sensor fusion
would allow for more reliable object detection, especially in
challenging conditions, such as low-light or high-occlusion
scenarios.
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Further optimization of the detection pipeline is also a
promising direction. Investigating model compression tech-
niques, such as quantization or pruning, could help reduce the
computational load and make the system more efficient for
deployment on resource-constrained platforms. Additionally,
leveraging hardware accelerators such as Graphics Process-
ing Units (GPUs) or Tensor Processing Units (TPUs) could
enhance the system’s real-time performance, enabling faster
detection speeds without compromising accuracy.

Finally, the deployment of the system on fully autonomous
platforms presents an exciting challenge. Integrating 3D
vision-based object detection with decision-making and con-
trol systems could enable robots to not only perceive but
also interact with objects in their environment in real-time.
This would be particularly beneficial for autonomous mobile
robots, drones, and service robots in dynamic and cluttered
environments.

In summary, the integration of 3D vision into real-time ob-
ject detection represents a significant advancement in robotic
perception. While the approach holds great promise, con-
tinuous refinement and exploration of complementary tech-
nologies, such as SLAM, multi-modal sensing, and hardware
optimizations, will be key to achieving full deployment in
autonomous systems.
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