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Abstract—Object detection remains a fundamental and in-
dispensable task in the deployment of autonomous systems,
including self-driving vehicles, unmanned aerial systems, in-
telligent manufacturing environments, and robotic bin-picking
platforms. Achieving high detection accuracy under strict real-
time constraints and limited computational resources continues to
be a central challenge. This study investigates lightweight deep
learning architectures optimized for real-time object detection,
particularly in scenarios where processing power and memory
are constrained.

We examine and compare representative compact detec-
tion models, including YOLOv4-tiny, MobileNet-SSD, and
EfficientDet-D0, focusing on their architectural trade-offs, in-
ference speed, parameter efficiency, and deployment feasibility.
These models are evaluated not only on performance metrics
but also on implementation compatibility with embedded and
edge hardware often found in autonomous platforms. Further-
more, the paper discusses model compression techniques such as
quantization and pruning, emphasizing their role in maintaining
accuracy while reducing model complexity and power consump-
tion.

A dedicated case study on robotic bin picking is included to
illustrate how minimalist models can be integrated into practical
applications. The case highlights end-to-end performance from
object localization to real-time decision-making under dynamic
and partially structured conditions. Insights into task-specific
tuning and deployment strategies are provided to guide future
implementations.

This work contributes to the growing need for efficient
vision systems by outlining practical solutions that balance
speed, accuracy, and computational demands, thereby supporting
the development of responsive and resource-aware autonomous
agents.

Keywords—Real-Time Object Detection, Lightweight Deep
Learning, Autonomous Systems, YOLOv4-tiny, Model Quanti-
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I. INTRODUCTION

Autonomous systems have rapidly transformed from con-
ceptual frameworks into deployed technologies across a range
of domains including intelligent transportation, unmanned
aerial vehicles (UAVs), smart manufacturing, and robotic
manipulation systems. Central to their operational autonomy
is the ability to perceive and interact with the environment
through accurate, low-latency object detection [32], [30]. In
such dynamic settings, visual understanding plays a crucial
role in path planning, collision avoidance, and decision-
making [3], [4].

However, high-performing deep learning models, such as
those based on two-stage detectors (e.g., Faster R-CNN [31]),
are often computationally intensive, making them less suitable

for edge devices with constrained resources. The limitations
of power, memory, and real-time responsiveness in embed-
ded systems present a critical challenge for deployment [6],
[7]. As a result, lightweight deep learning architectures have
emerged to address the trade-off between model accuracy and
computational efficiency.

Architectures like YOLOv4-tiny [35], MobileNet-SSD [36],
and EfficientDet-DO [38] have been proposed to serve ap-
plications that require real-time detection on resource-limited
devices. These models leverage depthwise separable convo-
lutions, neural architecture search, and compound scaling to
maintain inference speed without significant loss in precision
[11], [37]. This has enabled the deployment of smart systems
in constrained environments such as autonomous drones [42],
surveillance cameras [14], and industrial robotics [15].

Edge computing frameworks increasingly rely on these
compact models to offload processing from the cloud, reducing
latency and improving privacy and robustness [16], [17].
Furthermore, model optimization techniques such as quantiza-
tion [47], pruning [49], and knowledge distillation [S0] have
shown promise in further reducing computational load without
significantly degrading performance. These advancements are
particularly relevant in applications such as bin-picking robots,
where cycle time and accuracy are critical factors [41].

The adoption of lightweight models has also been fueled by
advances in hardware accelerators, including Tensor Process-
ing Units (TPUs) and Neural Processing Units (NPUs), which
are tailored for low-power Al inference [22], [23]. These
systems can now integrate perception modules that run in real-
time while conforming to the energy and space constraints of
mobile platforms [24]. Such capability is instrumental in the
development of scalable, cost-effective autonomous systems
used in smart cities, logistics, and healthcare [44], [26].

This paper investigates lightweight deep learning models
suitable for real-time object detection and examines their com-
parative performance in autonomous platforms. We explore
not only architectural design but also deployment feasibility
and real-world constraints, providing a comprehensive study
toward efficient Al-powered perception.

II. BACKGROUND AND RELATED WORK

Object detection has undergone significant transformation
from classical image processing techniques to modern deep
learning-based approaches. Traditional methods relied heav-
ily on handcrafted features such as Histogram of Oriented
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Gradients (HOG) and Haar cascades, combined with sliding
window mechanisms [27], [28]. However, these approaches
were often inefficient and failed under complex variations in
scale, illumination, and occlusion.

The advent of deep learning introduced a paradigm shift, be-
ginning with the Region-based Convolutional Neural Network
(R-CNN) [29], which proposed region proposals followed
by CNN-based classification. Subsequent enhancements led
to Fast R-CNN [30] and Faster R-CNN [31], significantly
improving speed and accuracy. Despite their effectiveness,
these two-stage detectors required high computational power,
making real-time inference on embedded systems impractical.

Single-stage detectors such as YOLO (You Only Look
Once) [32], [33] and SSD (Single Shot Multibox Detector)
[34] offered faster alternatives by performing object localiza-
tion and classification in one forward pass. However, early
versions still had high memory footprints.

To address these limitations, lightweight versions such
as YOLOv4-tiny [35], MobileNet-SSD [36], [37], and
EfficientDet-DO0 [38] were introduced. These models are opti-
mized for speed and efficiency, making them suitable for edge
computing and real-time autonomous applications.

A. Lightweight Model Architectures

YOLOVv4-tiny employs a reduced version of CSPDarknet53
as its backbone along with PANet for efficient feature aggre-
gation. The network prioritizes speed by reducing layers while
maintaining acceptable detection performance [43].

MobileNet-SSD leverages depthwise separable convolu-
tions to minimize the number of parameters and computations,
which is especially effective on ARM-based processors such
as Raspberry Pi and Jetson Nano [36], [40].

EfficientDet-D0, on the other hand, introduces compound
scaling—jointly optimizing input resolution, network depth,
and width. It uses EfficientNet-BO as its backbone and BiFPN
(Bidirectional Feature Pyramid Network) for multi-scale fea-
ture fusion [38], [39].

B. Deployment Context

These models have been successfully deployed on various
embedded hardware platforms. Table I summarizes their suit-
ability for edge devices.

TABLE I: Deployment Feasibility of Lightweight Object De-
tectors

Model FPS (Jetson Nano) | mAP (COCO) | Size (MB)
YOLOV4-tiny 25 33.1 23.5
MobileNet-SSD 20 22.2 17.1
EfficientDet-D0O 16 343 20.1

These lightweight models are widely used in real-world ap-
plications such as robotic bin picking [41], drone surveillance
[42], and mobile AR systems [44].

III. METHODOLOGY

This study conducts a comprehensive evaluation of
lightweight deep learning architectures for real-time object

detection, focusing on their applicability in constrained envi-
ronments such as embedded devices and autonomous systems.
The experiments employ two widely used datasets—COCO
[45] and PASCAL VOC [46]—to benchmark detection perfor-
mance under diverse object categories, scales, and contexts.
The evaluation considers five primary metrics: (i) mean
Average Precision (mAP), (ii) Frames Per Second (FPS), (iii)
model size (in MB), (iv) inference time per frame, and (v)
resource utilization (memory and power consumption). These
metrics provide a well-rounded view of detection accuracy,
computational efficiency, and real-time feasibility.

A. Optimization Techniques

To adapt these models for edge deployment, we apply three
widely recognized model optimization techniques:

1. Quantization: Post-training quantization converts
weights and activations from 32-bit floating point to 8-bit
integers, reducing memory footprint and improving inference
latency [47]. This is particularly beneficial on hardware accel-
erators that support low-precision arithmetic [48].

2. Pruning: Structured pruning eliminates less significant
neurons and channels, resulting in a sparser network with
faster inference [49]. This helps maintain accuracy while
significantly reducing model complexity.

3. Knowledge Distillation: We implement distillation by
training compact ‘“student” networks to mimic the output
logits of a larger “teacher” network [50]. This enhances gen-
eralization and robustness, especially in resource-constrained
inference environments.

B. Deployment and Hardware Evaluation

The models are deployed and profiled on NVIDIA Jetson
Nano and TX2 platforms, with optimization through TensorRT
to leverage GPU acceleration and FP16 precision [51]. Fig. 3
illustrates the TensorRT optimization pipeline employed in our
study.

C. Real-World Testing Scenarios

Evaluation under realistic deployment conditions considers
scenarios such as mobile robotic vision and UAV-based aerial
surveillance. Particular emphasis is placed on robustness un-
der:

« Partial occlusion (e.g., cluttered environments)
« Variable lighting conditions (e.g., indoor vs outdoor)
« Multi-object scenes (e.g., crowd detection)

D. Benchmark Summary

Table II summarizes the performance of the evaluated
models under standard conditions. All inference tests were
conducted using TensorRT-optimized engines.

The above results demonstrate that YOLOv4-tiny provides
the best trade-off between speed and accuracy, whereas
EfficientDet-DO achieves slightly higher accuracy at the cost
of latency. MobileNet-SSD offers the smallest footprint but
with limited mAP.
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Fig. 1: YOLOv4-tiny Architecture: Input image processed via CSPDarknet53-tiny and PANet for fast detection.
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Fig. 3: TensorRT Optimization Flow used for accelerating
inference on Jetson platforms.

TABLE II: Performance Metrics of Lightweight Object De-
tection Models

Model mAP (%) | FPS | Size (MB) | Inference (ms)
YOLOV4-tiny 33.1 25 23.5 41
MobileNet-SSD 22.2 20 17.1 48
EfficientDet-DO 343 16 20.1 55

IV. RESULTS AND DISCUSSION

This section presents the experimental findings obtained
from benchmarking YOLOv4-tiny, MobileNet-SSD, and

EfficientDet-DO on both standard and resource-constrained
platforms. Evaluations were conducted on COCO and PAS-
CAL VOC datasets, and additional deployment tests were run
on Jetson Nano and TX2 using TensorRT-optimized models.

A. Detection Accuracy and Inference Speed

Table III summarizes the comparative results in terms of
mean Average Precision (mAP), Frames Per Second (FPS),
and memory footprint. YOLOv4-tiny achieved exceptional
inference speed, surpassing 220 FPS on high-end GPUs such
as the RTX 3090, but demonstrated moderate accuracy ( 33%
mAP). MobileNet-SSD delivered a solid balance, with 60 FPS
and 35% mAP, while requiring the least memory. EfficientDet-
DO excelled in detection performance ( 38% mAP), albeit at
a slightly reduced speed ( 40 FPS), highlighting its trade-off
favoring precision over speed.

TABLE III: Detection Performance on High-End GPU (RTX
3090)

Model mAP (%) | FPS | Model Size (MB)
YOLOv4-tiny 33.0 220 235
MobileNet-SSD 35.1 60 17.1
EfficientDet-DO 38.3 40 20.1

B. Impact of Optimization Techniques

Post-training quantization and structured pruning were ap-
plied to all three models. These techniques effectively re-
duced model sizes by 40%—60% and brought down inference
times by approximately 30%, without significantly affecting
detection accuracy. Knowledge distillation was particularly
beneficial for MobileNet-SSD, yielding a 3% improvement in
mAP, thus narrowing the performance gap with EfficientDet-
DO.

C. Application Insights and Deployment Readiness

Model selection should consider application-specific trade-
offs. For instance, YOLOv4-tiny is ideal for ultra-fast
inference in time-sensitive tasks like drone navigation.
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TABLE IV: Optimization Effects on MobileNet-SSD

Optimization mAP (%) | Size (MB) | Inference Time (ms)
Original 35.1 17.1 48
Quantized (INT8) 34.6 10.2 34
Pruned 349 9.5 33
Distilled 38.0 17.1 48

EfficientDet-DO suits high-accuracy requirements such as in-
spection or anomaly detection in industrial setups. MobileNet-
SSD presents a favorable compromise for mobile applications
where memory and compute budgets are tight.

The robustness of each model was also evaluated under
real-world conditions including partial occlusion, varying il-
lumination, and multi-object detection. While EfficientDet-
DO maintained performance under occlusion, YOLOv4-tiny
occasionally missed smaller or overlapping objects due to its
lightweight architecture.

These insights are critical for the deployment of vision
systems in autonomous robots, drones, and industrial manipu-
lators where real-time decisions—such as obstacle avoidance
or precision sorting—are vital. The experimental pipeline and
real-world integration steps are illustrated in Fig. 4.
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Fig. 4: Working Flow Chart for Model Deployment and
Optimization

D. Summary of Findings
In summary:

¢ YOLOVv4-tiny is best suited for high-speed detection
tasks with moderate accuracy needs.

« MobileNet-SSD strikes a good balance between perfor-
mance and resource usage, ideal for edge deployment.

« EfficientDet-D0 offers the highest accuracy but at the
cost of lower FPS and higher compute requirements.

These results advocate for context-driven model selection,
particularly when deploying intelligent perception in energy-
efficient autonomous systems.

V. CASE STUDY: BIN PICKING ROBOTIC ARM

This case study explores the deployment of a MobileNet-
SSD-based real-time object detection pipeline on a 6-degree-
of-freedom (DOF) robotic arm for autonomous bin picking
tasks. The experimental setup utilized an NVIDIA Jetson
Nano as the core computational unit, integrated with a robotic

manipulator operating under resource and environmental con-
straints such as occlusion, lighting variability, and limited
onboard compute power.

A. System Architecture

Vision Module: An RGB camera was mounted directly
above the bin to capture real-time imagery of randomly placed
industrial parts. MobileNet-SSD processed the visual input to
generate bounding boxes for candidate objects. Image pre-
processing techniques, including histogram equalization and
Gaussian blur, were applied to suppress noise and enhance
edge definition, leading to better detection accuracy.

Detection

H Classification
| v

ﬂ| Box regression

Feature Map

_Feature _
Extractor

[ —
Picture ]

.

@)

Region Proposal Network
Feature Map M Object:

True/False?
ﬂ Box regression
Feature _ /-
Extractor /

Classifier

N [I Classification

HBOK Refinement

Picture

®
Fig. 5: MobileNet-SSD for Object Detection in Bin Picking

Grasp Planning Module: Using bounding box coordinates,
the system computed optimal grasp points through geometric
heuristics and depth data from an Intel RealSense D435 depth
sensor. The depth map enabled 3D position estimation and
orientation selection, crucial for reliable grasp planning in
cluttered settings.

Control Module: A Robot Operating System (ROS)-based
architecture facilitated inverse kinematics (IK) and trajec-
tory planning. The arm’s motion controller executed smooth,
collision-free pick-and-place paths using real-time trajectory
optimization algorithms.

B. Performance Metrics

Table V summarizes the system’s operational efficiency
under continuous workload over 500 cycles.

TABLE V: Performance Metrics of Bin Picking Robotic Arm

Metric Value
Frame Rate 30 FPS
Detection Latency <35 ms
Detection Accuracy (Precision) 91%
Grasp Success Rate 85%
Average Cycle Time ~4 seconds
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C. Challenges and Solutions

Clutter and Occlusion: One of the main challenges was
detecting objects partially hidden or stacked in layers. To
address this, the detection model was trained on cluttered
object datasets and fine-tuned with non-maximum suppression
(NMS) techniques, significantly reducing false positives.

Lighting Variability: Inconsistent lighting caused detection
instability. This was mitigated using adaptive thresholding and
local contrast normalization, which improved visual robustness
across variable environments.

Edge Deployment Optimization: The MobileNet-SSD
model was quantized to INT8 and optimized using NVIDIA
TensorRT. This yielded a lightweight deployment without
substantial degradation in accuracy, suitable for embedded
inference on Jetson Nano.

D. Integration and Scalability

The system was integrated into a manufacturing line where
detected parts were picked from bins and placed onto a moving
conveyor belt. Due to its modular and ROS-compatible design,
the architecture is readily scalable to new object classes or
different hardware platforms.

E. Conclusion of Case Study

This case study demonstrates how lightweight deep learning
models such as MobileNet-SSD, when appropriately optimized
and integrated, can enable real-time robotic applications even
in compute-constrained environments. The practical deploy-
ment on a Jetson Nano-controlled robotic arm illustrates that
Al-enabled bin picking can be achieved at a low cost, offering
a viable automation pathway for small- and medium-scale
manufacturing units.

VI. CONCLUSION AND FUTURE WORK

This research has demonstrated that lightweight deep learn-
ing architectures such as YOLOv4-tiny, MobileNet-SSD, and
EfficientDet-DO0 are well-suited for real-time object detection
in autonomous systems operating under computational and
energy constraints. These models leverage architectural effi-
ciencies—including depthwise separable convolutions, com-
pound scaling, and pruned backbones—to deliver acceptable
detection accuracy while maintaining low latency and minimal
power consumption.

The benchmarking results indicated that:

¢ YOLOv4-tiny excels in speed, reaching up to 220 FPS,
making it suitable for fast-moving applications where
precision can be slightly compromised.

« MobileNet-SSD achieves a balance between computa-
tional efficiency and accuracy, demonstrating strong gen-
eralizability across platforms.

« EfficientDet-D0 provides the best detection accuracy,
with a moderate trade-off in inference speed and resource
consumption.

Furthermore, the case study on robotic bin picking con-

firmed that lightweight models, when fine-tuned and de-
ployed on optimized embedded platforms like Jetson Nano,

can deliver practical, robust, and cost-effective automation
solutions. The integration of techniques such as TensorRT-
based inference, INT8 quantization, and ROS-based motion
planning further elevated system performance under real-world
constraints.

A. Future Work

To enhance the robustness and intelligence of such
lightweight systems, several promising directions for future
work are outlined:

« Neural Architecture Search (NAS): Future studies may
explore automated architecture discovery using NAS to
tailor models for specific deployment platforms and de-
tection contexts.

« 3D Vision and Multi-Modal Sensing: Incorporating
stereo cameras, LiDAR, or depth sensors can enable
spatial reasoning and object interaction under complex
occlusions.

e Model Interpretability: Enhancing explainability of
model predictions, particularly in mission-critical applica-
tions such as autonomous navigation or surgical robotics,
is crucial for gaining user trust and ensuring safe opera-
tion.

« Collaborative Learning Between Edge and Cloud: Hy-
brid Al workflows, where edge devices perform inference
and periodically synchronize with cloud-based models for
retraining, can enable continual learning and contextual
adaptability.

In conclusion, the fusion of lightweight deep learning with
embedded optimization and intelligent control provides a pow-
erful pathway toward enabling autonomous systems to operate
reliably in real-time. By addressing current limitations and ex-
ploring synergistic advancements in architecture, sensing, and
training paradigms, future autonomous platforms can achieve
greater efficiency, scalability, and contextual awareness.
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