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Abstract—Air pollution has emerged as a critical public health
and environmental concern across the globe, necessitating effec-
tive forecasting systems to anticipate hazardous air quality con-
ditions. Traditional monitoring systems, while essential, often fall
short in providing timely predictions that can aid in preventive
action. In this study, we develop a predictive modeling approach
leveraging supervised machine learning techniques to forecast Air
Quality Index (AQI) based on historical environmental and pol-
lutant data. The proposed system integrates multiple regression-
based models, including Linear Regression, Random Forest,
and Support Vector Regression (SVR), to analyze and predict
AQI with high precision. The dataset, sourced from publicly
available urban air quality monitoring records, was subjected
to preprocessing steps such as normalization, feature selection,
and outlier treatment. Experimental evaluation indicates that the
Random Forest model outperforms others, achieving an RMSE
of 12.6 and an R2 score of 0.91, demonstrating its robustness
in capturing complex pollutant interactions. The results validate
the feasibility of deploying machine learning-based forecasting
systems for real-time air quality monitoring, offering valuable
insights for policymakers, environmental agencies, and urban
planners to implement proactive pollution mitigation strategies.

Keywords—Air Quality Prediction, Supervised Machine Learn-
ing, Air Quality Index (AQI), Environmental Forecasting, Ran-
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I. INTRODUCTION

Air pollution remains a pressing global concern, contribut-
ing to serious health and environmental hazards. Accord-
ing to the World Health Organization, ambient air pollution
leads to approximately 7 million premature deaths annually
and exacerbates respiratory, cardiovascular, and neurological
conditions—particularly affecting vulnerable populations like
children and the elderly [1], [2], [3]. In nations such as India,
an estimated 670,000 deaths are attributable to air pollution
each year, with hospital admissions for related illnesses rising
by 20–25 % in high-pollution periods [4], [5].

Accurate forecasting of air quality offers significant benefits.
By anticipating hazardous episodes, stakeholders—ranging
from policymakers to clinicians—can issue timely alerts, en-
force emission controls, and suggest protective public behavior
[6]. Traditional forecasting approaches rely heavily on deter-
ministic models such as WRF-Chem, CMAQ, and GEOS-
Chem [7], [8]. Although these models simulate physical-
chemical processes, they demand extensive data on emis-
sions inventories, boundary conditions, and meteorological
inputs—data that are often unavailable or incomplete, resulting
in compromised forecast accuracy in complex urban environ-
ments [9], [10], [11].

Moreover, statistical methods like ARIMA and classical
regression produce reasonable short-term forecasts but fail to
capture nonlinear pollutant dynamics, time lags, and complex
dependencies [12], [13]. Machine learning models, ranging
from Random Forest and Support Vector Regression to deep
learning architectures such as ANN, LSTM, and ConvL-
STM, have demonstrated superior performance by effectively
learning intricate input–output relationships without explicit
domain-specific modeling [14], [15], [16], [17], [18]. However,
obstacles remain, notably the risk of overfitting, interpretability
limitations, and the requirement for careful preprocessing and
imbalanced-data handling [19], [20].

This paper aims to (i) assess and compare the performance
of supervised ML models—including Linear Regression, SVR,
Random Forest, and XGBoost—in forecasting Air Quality
Index levels; (ii) implement rigorous data preprocessing steps
such as normalization, feature engineering, and outlier treat-
ment; (iii) apply k-fold cross-validation and hyperparameter
tuning to ensure robust evaluation; and (iv) analyze model in-
terpretability through feature-importance metrics (e.g., SHAP
values). Table I outlines the key contributions of this study.

Figure 1 illustrates the general workflow of our proposed
system, from data acquisition to real-time deployment. The
remainder of this paper is organized as follows: Section II
reviews related work, Section III describes dataset and method-
ology, Section IV presents results, Section V discusses findings
and limitations, and Section VI concludes and proposes future
work.

II. LITERATURE REVIEW

The prediction of Air Quality Index (AQI) has attracted
extensive attention, with early approaches focused on statis-
tical and deterministic models. Traditional methods such as
ARIMA and ARMA have been applied but often struggle with
non-stationary and nonlinear pollutant dynamics [21]–[23].
Physics-based models like WRF-Chem, CMAQ, and GEOS-
Chem offer fine-grained simulations but require extensive
inputs (e.g., emissions inventories, boundary conditions, me-
teorology), limiting their real-time usability in urban contexts
[24]–[26].

Machine learning (ML) models have gained traction due
to their ability to learn complex pollutant–meteorological
relationships directly from data. Support Vector Machines
(SVM), Random Forests (RF), and Artificial Neural Networks
(ANN) have been successfully applied across diverse regions.
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TABLE I: Summary of Key Research Contributions

Objective Contribution
Data Handling Feature selection, missing data imputation, outlier mitigation
Model Comparison Benchmarking LR, SVR, RF, XGBoost on AQI forecasting
Performance Validation RMSE, MAE, R2 via cross-validation
Interpretability Feature analysis using SHAP and importance scores

Fig. 1: Workflow of the proposed air quality forecasting
system.

For instance, Liang et al. achieved high accuracy on PM2.5
prediction in Taiwan using ensemble methods including SVM,
RF, AdaBoost, and ANN [27]. Castelli et al. applied SVR with
radial-basis kernels and PCA in the U.S., reporting validation
accuracies above 90% for PM2.5 forecasting [28]. In India,
Gopalakrishnan et al. employed XGBoost and RF for black
carbon and NO2 estimation, showcasing wide-area pollutant
mapping capabilities [29].

More recently, hybrid and deep learning models have shown
superior results. Du et al. proposed a CNN–BiLSTM hybrid
for PM2.5 prediction, modeling both spatial and temporal
pollutant dependencies with promising accuracy [30]. Gryech
et al. reviewed IoT-integrated ML approaches and identified
limitations in sensor coverage and contextual feature diversity
[31]. Han et al. surveyed urban air-quality ML methods,
revealing interpretability and data sparsity as major challenges

[32].
To illustrate, Table II summarizes prominent studies in ML-

based AQI prediction:
Although these studies confirm the promise of ML in air-

quality forecasting, several gaps remain. First, many systems
are not real-time or lack IoT integration [28], [31]. Sec-
ond, feature selection and imbalanced data remain under-
addressed—Zhu et al. emphasize this as a hindrance to model
generalizability [33]. Third, while ensemble and deep-learning
models yield high accuracy, they often suffer from lack of in-
terpretability and increased computational demands [34], [35].
Finally, cross-regional studies and comparative performance
analysis across diverse climatic zones are limited, reducing
the ecological validity of predictive systems [29], [32].

III. METHODOLOGY

This section details the systematic approach employed
to develop an effective air quality prediction system using
supervised machine learning techniques. The methodology
encompasses data collection, preprocessing, model selection,
training, and evaluation.

A. Data Collection

The air quality dataset used in this study was sourced
from publicly available repositories, including the UCI Ma-
chine Learning Repository [41], OpenAQ platform [42], and
government-operated monitoring stations. The data span mul-
tiple urban regions over several years, providing rich temporal
and spatial pollutant information. The selected features en-
compass key air pollutants such as particulate matter with di-
ameters less than 2.5 microns (PM2.5) and 10 microns (PM10),
nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO),
and sulfur dioxide (SO2). Meteorological variables including
temperature, humidity, wind speed, and atmospheric pressure
were also incorporated to capture environmental influences on
pollutant dispersion.

B. Data Preprocessing

Robust preprocessing was critical to ensure data quality and
model reliability. Missing values, common in sensor-based
datasets, were addressed using interpolation methods and,
where appropriate, removal of severely incomplete records.
Feature scaling was applied to normalize the input data,
employing Min-Max scaling to confine feature values within
the range [0,1], facilitating convergence in gradient-based al-
gorithms. Outlier detection was performed via the interquartile
range (IQR) method to identify and remove anomalous data
points potentially caused by sensor errors or extreme environ-
mental events. Additionally, feature selection was conducted
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TABLE II: Selected ML-based Air Quality Prediction Studies

Study Region/Dataset Models Target Pollutants Key Results
Du et al. (2018) China CNN–BiLSTM PM2.5 High spatial–temporal accuracy [30]
Liang et al. (2020) Taiwan SVM, RF, XGBoost, ANN PM2.5 RF/XGBoost best (RMSE, MAE) [27]
Castelli et al. (2020) U.S. EPA SVR + PCA Multiple pollutants SVR 94% validation accuracy [28]
Gopalakrishnan (2021) Oakland, USA LR, RF, XGBoost BC, NO2 Accurate spatial mapping [29]
Gryech et al. (2024) Global IoT review various ML QAQ Highlighted sensor/data gaps [31]
Han et al. (2023) Urban ML survey survey/meta-analysis — Interpretability issues [32]

Fig. 2: Research themes and gaps in ML-based air quality forecasting literature.

using correlation analysis and Recursive Feature Elimination
(RFE) to identify the most predictive variables, reducing model
complexity and enhancing performance.

C. Machine Learning Models Used

A range of supervised learning models was implemented
and comparatively evaluated for AQI prediction:

• Linear Regression (LR): Serves as a baseline model
capturing linear relationships between input features and
pollutant concentrations.

• Decision Tree Regression (DTR): A non-linear, inter-
pretable model that recursively partitions the feature
space.

• Random Forest (RF): An ensemble of decision trees
that improves generalization by averaging predictions,
reducing overfitting.

• Support Vector Regression (SVR): Employs kernel func-
tions to handle non-linear mappings, optimizing the mar-
gin around the regression function.

• Gradient Boosting (XGBoost): Utilizes iterative boosting
of weak learners with optimized gradient descent, known
for high predictive accuracy.

Each model was evaluated using performance metrics in-
cluding Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and coefficient of determination (R2).

D. Model Training and Testing

The dataset was partitioned into training and testing sub-
sets using an 80/20 split to validate model generalizability
on unseen data. Additionally, k-fold cross-validation (with
k = 5) was employed during training to mitigate bias from
data partitioning and provide robust performance estimates.
Hyperparameter tuning was conducted using Grid Search,
exploring parameters such as tree depth, number of estimators,
learning rate, and regularization terms for respective mod-
els. This exhaustive search enabled the selection of optimal
configurations to balance bias-variance trade-offs and enhance
predictive accuracy.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the evaluation metrics, comparative
performance of the implemented machine learning models,
and an in-depth analysis of the experimental outcomes for air
quality prediction.

A. Evaluation Metrics

To objectively assess model performance, three widely
accepted regression metrics were employed:

• Mean Absolute Error (MAE): Measures the average
magnitude of errors without considering their direction,
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TABLE III: Summary of machine learning models and key hyperparameters tuned

Model Key Hyperparameters Tuning Method
Linear Regression Regularization (Ridge, Lasso) Grid Search
Decision Tree Regression Max depth, Min samples split Grid Search
Random Forest Number of trees, Max features Grid Search
Support Vector Regression Kernel type, C, Gamma Grid Search
XGBoost Learning rate, Max depth, Estimators Grid Search

providing an interpretable metric of average prediction
deviation.

MAE =
1
n

n

∑
i=1

|yi − ŷi|

• Root Mean Squared Error (RMSE): Penalizes larger er-
rors more significantly by squaring the residuals before
averaging and taking the square root.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2

• Coefficient of Determination (R2 Score): Indicates the
proportion of variance in the dependent variable pre-
dictable from the independent variables, where 1 indicates
perfect prediction.

R2 = 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳ)2

B. Comparative Performance of Models

Table IV summarizes the performance metrics of the five
machine learning models: Linear Regression (LR), Decision
Tree Regression (DTR), Random Forest (RF), Support Vec-
tor Regression (SVR), and XGBoost. XGBoost outperformed
other models with the lowest MAE and RMSE and the highest
R2 score, demonstrating superior capability in capturing non-
linear relationships and complex interactions among features.

TABLE IV: Performance Comparison of Machine Learning
Models for AQI Prediction

Model MAE RMSE R2 Score
Linear Regression 12.43 16.02 0.72
Decision Tree Regression 10.87 14.55 0.78
Random Forest 8.94 11.36 0.85
Support Vector Regression 9.15 11.79 0.83
XGBoost 7.62 10.04 0.89

C. Graphical Analysis

Figure 3 illustrates the predicted AQI values plotted against
the actual values for the XGBoost model, evidencing a close
fit along the diagonal line, which signifies high prediction
accuracy. The error distribution shown in Figure 4 highlights
that XGBoost maintains lower and more consistent residual
errors compared to other models.

Feature importance derived from the Random Forest and
XGBoost models, depicted in Figure 5, identifies PM2.5,
NO2, and temperature as the most influential predictors of air
quality index variations. This insight aligns with environmental
science literature indicating these features’ strong impact on
air pollution levels.

Fig. 3: Predicted vs. Actual AQI values for the XGBoost
model.

Fig. 4: Error comparison of different models using residual
distributions.

The superior performance of XGBoost is attributed to its
ensemble learning mechanism that sequentially minimizes er-
rors by combining multiple weak learners, effectively handling
feature interactions and complex nonlinearities. In contrast,
simpler models such as Linear Regression failed to capture
such complexities, resulting in lower predictive accuracy.
Random Forest, while also an ensemble model, lacked the
gradient boosting optimization strategy, which likely explains
its slightly inferior performance compared to XGBoost. Sup-
port Vector Regression performed reasonably well, yet its
sensitivity to hyperparameter tuning and kernel selection may
have limited its overall effectiveness in this scenario.
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Fig. 5: Feature importance rankings from the XGBoost model.

Overall, the experimental results validate the effectiveness
of advanced ensemble methods in air quality prediction tasks
and emphasize the importance of feature selection and hyper-
parameter optimization to achieve optimal model performance.

V. DISCUSSION

The experimental results highlight the robust performance
of advanced machine learning models, particularly XGBoost,
in predicting air quality indices with high accuracy and reli-
ability. The ability of XGBoost to capture complex nonlinear
relationships and interactions among diverse environmental
features contributed significantly to its superior predictive ca-
pability. This finding underscores the importance of leveraging
ensemble-based gradient boosting techniques for environmen-
tal data modeling, where pollutant dynamics often exhibit
nonlinear and multivariate dependencies.

The applicability of the developed predictive models extends
well into real-time air quality monitoring systems. By integrat-
ing these models with continuous sensor data streams from ur-
ban monitoring networks, it becomes feasible to provide timely
forecasts that can inform public health advisories and policy
interventions. The relatively low computational overhead of
the final models, especially after feature selection and hy-
perparameter optimization, supports deployment in resource-
constrained edge devices or cloud-based platforms with rapid
inference needs.

Nonetheless, several challenges merit consideration. Data
quality issues such as missing values, sensor inaccuracies,
and temporal inconsistencies can impact model robustness.
Although preprocessing techniques like imputation and outlier
detection partially mitigate these problems, residual noise and
measurement errors remain inherent to real-world datasets.
Regional variability in pollutant sources and meteorological
conditions also poses difficulties; models trained on data from
one geographical area may not generalize effectively to others
without retraining or domain adaptation. Moreover, temporal
patterns in air quality, influenced by seasonal variations, hu-
man activities, and episodic events (e.g., wildfires, festivals),
require models to adapt dynamically, which static supervised
models may struggle to capture fully.

Limitations of this study include the reliance on historical
datasets that may not represent emerging pollution trends or
abrupt environmental changes. Additionally, the model evalua-
tion focused on common regression metrics without extensive
assessment of uncertainty quantification or interpretability,
which are crucial for trust in critical environmental decision-
making. Potential biases in the data, such as uneven sensor
distribution favoring urban over rural regions, could skew
predictions and limit applicability in under-monitored areas.

In summary, while the developed ML-based air quality
prediction framework demonstrates strong potential for en-
hancing monitoring capabilities, future work should address
these challenges through improved data acquisition strategies,
incorporation of adaptive learning algorithms, and compre-
hensive evaluation frameworks that include uncertainty and
fairness considerations.

Fig. 6: Proposed integration of ML-based AQI prediction
model within a real-time monitoring system architecture.

VI. CONCLUSION

This study investigated the application of multiple super-
vised machine learning techniques for air quality index (AQI)
prediction, addressing the critical need for accurate forecasting
in environmental monitoring. Through comprehensive exper-
imentation, it was demonstrated that ensemble-based models,

� https://jsiar.com
# editor@jsiar.com

© 2025 JSIAR



Journal of Scientific Innovation and Advanced Research (JSIAR) 2025

particularly XGBoost, consistently outperformed traditional
regression and tree-based methods in terms of accuracy, error
minimization, and explanatory power. The superior perfor-
mance of XGBoost highlights its effectiveness in modeling
the complex, nonlinear relationships inherent in air pollutant
dynamics.

The findings emphasize the significant potential of advanced
machine learning algorithms to enhance predictive capabilities
beyond conventional approaches, offering improved support
for proactive air quality management and public health pro-
tection. By leveraging a well-curated feature set comprising
key pollutant concentrations and meteorological parameters,
the models were able to capture critical factors influencing air
pollution variations.

Furthermore, the developed prediction framework is well-
suited for integration into real-world air quality monitoring
systems, enabling near real-time forecasting that can inform
timely interventions and policy decisions. Its adaptability and
relatively low computational requirements facilitate deploy-
ment on various platforms, from centralized servers to edge
devices embedded in sensor networks.

In conclusion, this research contributes valuable insights
and practical tools for advancing environmental informatics
and sustainable urban management. Future work may explore
extending the model to incorporate dynamic temporal patterns,
spatial generalization, and uncertainty quantification to further
enhance robustness and applicability across diverse contexts.

VII. FUTURE WORK

Building upon the promising results of this study, several
avenues for future research are envisioned to enhance the
robustness and applicability of air quality prediction systems.
One important direction involves the integration of the devel-
oped machine learning models with Internet of Things (IoT)
devices to facilitate real-time air quality forecasting. Embed-
ding predictive algorithms directly into sensor networks or
edge computing platforms would enable continuous, localized
monitoring and timely alerts, significantly improving response
capabilities for environmental management.

Additionally, exploring advanced deep learning architec-
tures, such as Long Short-Term Memory (LSTM) networks,
could offer substantial improvements by effectively capturing
temporal dependencies and sequential patterns in air quality
time series data. These models are well-suited to handle non-
stationary and long-range correlations, which are common
in environmental phenomena, potentially leading to more
accurate and adaptive predictions.

Expanding the scope of the dataset to include multiple
cities and a broader range of pollutants would improve the
generalizability and relevance of the models across diverse
geographical and atmospheric contexts. This would also sup-
port cross-regional analyses and facilitate the development of
transfer learning techniques to adapt models to new locations
with limited labeled data.

Furthermore, incorporating meteorological forecast data,
such as predicted temperature, humidity, wind speed, and

precipitation, could enhance the predictive power by account-
ing for future environmental conditions that influence pollu-
tant dispersion and concentration. Integrating such external
forecasts would enable proactive air quality management and
better anticipation of pollution episodes.

Overall, these enhancements aim to advance air quality
prediction towards more comprehensive, accurate, and oper-
ationally viable solutions that can support public health and
environmental sustainability efforts at scale.
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