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Abstract—Urban air quality has become a critical concern
due to rising pollution levels and their direct impact on public
health and environmental sustainability. This study presents a
comparative analysis of various machine learning models aimed
at forecasting fine particulate matter (PM2.5) concentrations
and overall Air Quality Index (AQI) values in the context of
smart city infrastructure. The models evaluated include Linear
Regression, Support Vector Regression (SVR), Random Forest,
XGBoost, and Long Short-Term Memory (LSTM) networks.
Historical air quality datasets sourced from public environmental
monitoring agencies were used, covering a diverse range of
meteorological and pollutant features. Evaluation was conducted
using standard performance metrics such as Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and the Coefficient
of Determination (R? score). Among the tested models, XGBoost
consistently demonstrated superior accuracy in both PM2.5 and
AQI predictions, attributable to its robustness against outliers
and efficient handling of non-linear data patterns. The results
underline the practical applicability of advanced ML models in
building predictive air monitoring systems that can be integrated
into smart city platforms for proactive environmental manage-
ment and policy-making.

Keywords—PM2.5, AQI, Machine Learning, Air Quality Fore-
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I. INTRODUCTION

Air pollution in urban environments has emerged as a
pressing global concern, posing severe risks to human health,
climate stability, and the sustainability of cities [1], [2].
Among the numerous pollutants, particulate matter less than
2.5 micrometers in diameter (PM2.5) has drawn significant
attention due to its deep penetration into the human respi-
ratory system and strong association with cardiovascular and
pulmonary diseases [3], [4]. The Air Quality Index (AQI),
a composite indicator that encapsulates multiple pollutants,
including PM2.5, serves as a critical benchmark for public
health advisories, policy regulation, and urban planning [5],
[6]. The growing emphasis on smart city development has led
to the integration of real-time monitoring systems and data-
driven solutions to enhance environmental intelligence and
urban resilience [7], [8].

Machine learning (ML) techniques have shown considerable
promise in modeling and forecasting air quality due to their
ability to capture complex, non-linear relationships among
atmospheric variables, pollutants, and meteorological parame-
ters [10], [24]. Several studies have explored the potential of
models like Support Vector Machines (SVM), Random Forests
(RF), and deep learning architectures such as Long Short-
Term Memory (LSTM) networks in predicting PM2.5 and AQI

values [22], [25]. Despite this progress, most research has been
limited to specific models or narrow regional datasets, often
lacking a systematic comparative analysis of different ML
approaches under consistent conditions [26], [27]. This gap
hinders informed decision-making when selecting appropriate
forecasting tools for diverse urban scenarios.

The need for accurate and timely predictions of AQI and
PM2.5 is further underscored by their direct policy impli-
cations, such as issuing pollution alerts, regulating traffic
flow, and guiding industrial emissions [23], [28]. Moreover,
integrating ML-based forecasting into smart city platforms can
significantly enhance environmental monitoring, public aware-
ness, and governmental responsiveness [33], [36]. However,
the selection of the most suitable model for a given context
remains a challenge due to variations in model interpretability,
computational efficiency, and performance under data sparsity
or noise.

In this study, we address these challenges by conducting a
comprehensive comparative evaluation of multiple ML mod-
els—including Linear Regression, Support Vector Regression
(SVR), Random Forest, XGBoost, and LSTM—for forecasting
PM2.5 and AQI in urban environments. The models are trained
and tested on publicly available datasets from urban air quality
monitoring stations, incorporating pollutant concentrations and
meteorological features. Evaluation is performed using stan-
dardized metrics such as Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), and R? score. Our findings
identify XGBoost as the most consistent performer across
evaluation metrics, highlighting its suitability for practical
deployment in real-time smart city systems.

The contributions of this paper are threefold: (1) we present
a comparative study of five prominent ML models for urban
air quality forecasting; (2) we utilize real-world, multi-feature
datasets to ensure generalizability and practical relevance; and
(3) we analyze performance not only in terms of accuracy but
also robustness and efficiency. The insights derived from this
study are expected to inform future implementations of intel-
ligent environmental systems within smart city frameworks.

TABLE I: Key Parameters Affecting Urban AQI and PM2.5
Levels

Parameter Type
PM2.5, PM10, NO,, SO,, O3 Pollutants
Temperature, Humidity, Wind Speed, Pressure | Meteorological
Traffic, Industrial Emissions Anthropogenic
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Fig. 1: Workflow for ML-based air quality forecasting inte-
grated within a smart city platform.

II. LITERATURE REVIEW

Air quality forecasting has been an active area of research
due to the escalating environmental and health implications of
air pollution in urban areas. A variety of models have been
proposed ranging from traditional statistical approaches to ad-
vanced machine learning (ML) and deep learning techniques.
Early models, such as autoregressive integrated moving aver-
age (ARIMA), were widely used for time-series forecasting
of pollutant levels [19]. However, they are limited by linear
assumptions and their inability to handle complex temporal-
spatial dependencies present in atmospheric data [20].

With advancements in data science, ML models have in-
creasingly been employed for predicting air pollutant con-
centrations, particularly PM2.5 and AQI. Linear Regression
and Support Vector Regression (SVR) have shown reasonable
performance when trained on historical pollution data and me-
teorological factors [21], [22]. Ensemble methods like Random
Forest (RF) and Gradient Boosted Trees (e.g., XGBoost) have
gained traction due to their superior predictive capabilities
and robustness to noise [23], [24]. These models have proven
effective in capturing non-linear interactions among pollutants
and weather attributes.

Deep learning models, especially Long Short-Term Mem-
ory (LSTM) networks, are increasingly being explored for
sequential modeling in air quality prediction due to their
memory structure and ability to model long-term dependencies
[25], [26]. Hybrid models combining CNNs and LSTM have
also demonstrated promising performance in spatiotemporal

air quality prediction tasks [27], [28]. Nevertheless, these
models often require substantial computational resources and
are sensitive to hyperparameter configurations, which limits
their deployment in real-time systems.

Several benchmark datasets have facilitated air quality mod-
eling, including OpenAQ, Central Pollution Control Board
(CPCB) India, and Beijing Environmental Monitoring Center
[31], [37], [38]. These datasets provide historical records of
pollutants like PM2.5, PM10, NO,, SO,, CO, O3, and weather
parameters such as temperature, humidity, wind speed, and
barometric pressure. While these datasets support data-driven
modeling, inconsistencies in data quality, missing values, and
regional variability pose challenges to model generalizability.

Comparative studies across ML models reveal mixed find-
ings. For instance, [32] found that SVR outperformed RF
in PM2.5 prediction in Shanghai, whereas [33] reported that
XGBoost yielded lower RMSE and higher R? scores in Delhi.
Some works have attempted multi-city comparisons, yet many
lack consistency in evaluation metrics and pre-processing
standards, making it difficult to generalize conclusions [34],
[36].

Furthermore, few studies explore real-time integration of
forecasting models into smart city platforms. While some
propose predictive dashboards or APIs [35], there is limited
discussion on model latency, update frequency, or edge deploy-
ment. This gap highlights the need for scalable, interpretable,
and accurate ML models tailored to dynamic urban air quality
systems.

To summarize, the existing literature offers a wide spectrum
of modeling approaches and datasets for air quality fore-
casting. However, gaps persist in comparative benchmarking,
generalizability across geographies, and readiness for real-time
smart city deployment. This study aims to fill these gaps by
evaluating multiple ML models on consistent datasets with
unified metrics and exploring their suitability for urban-scale
integration.

IIT. DATA AND PREPROCESSING
A. Data Collection

To forecast PM2.5 and AQI effectively, a multi-source data
collection approach was employed, integrating open-access
repositories and official governmental portals. Datasets were
primarily sourced from OpenAQ [37], which aggregates air
quality data from monitoring stations worldwide, including
cities like Delhi, Beijing, and Los Angeles. Additional data
for Indian regions were extracted from the Central Pollution
Control Board (CPCB) [38], which provides hourly pollutant
readings from certified government-operated stations. To sup-
plement historical meteorological variables, the Kaggle Air
Quality datasets [39] and real-time feeds from IoT sensor
networks deployed across Delhi-NCR [40] were utilized.

B. Data Description

The collected datasets contained multi-dimensional vari-
ables essential for comprehensive air quality prediction.
These include concentrations of particulate matter (PM2.5
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TABLE II: Comparison of Prior ML-Based Air Quality Prediction Studies

Study Model(s) Dataset Region Key Metric (RMSE)
[21] SVR, LR OpenAQ Beijing 31.7
[23] RF, XGBoost CPCB Delhi 25.2
[26] LSTM UCT Air Quality London 28.4
[27] CNN-LSTM Beijing EPA Beijing 21.3
[36] XGBoost, RF OpenAQ Multi-city 23.7

and PM10), gaseous pollutants like NOy, CO, O3, SO;, and

meteorological features such as temperature, humidity, wind
speed, and atmospheric pressure. The temporal granularity of

the data ranged from hourly to daily observations, spanning
a continuous window from January 2017 to December 2023.
Table III lists the primary features used in the study.

TABLE III: Key Variables Used in the Prediction Models

Feature Description
PM2.5 Particulate Matter <2.5um concentration (ug/m?3)
PM10 Particulate Matter <10um concentration (ug/m3)
NOyx Nitrogen Oxides (ppb)
CcO Carbon Monoxide (ppm)

O3 Ozone (ppb)

SO, Sulfur Dioxide (ppb)
Temperature Ambient Temperature (°C)
Humidity Relative Humidity (%)

Wind Speed Wind Velocity (m/s)
Pressure Atmospheric Pressure (hPa)

C. Data Cleaning and Preprocessing

To ensure model integrity and prevent bias due to incom-
plete data, extensive preprocessing steps were undertaken.
Initially, missing values were identified through data profiling.
Time series interpolation and mean imputation techniques
were applied depending on the distribution of null values [41].
Outlier detection using the interquartile range (IQR) and z-
score normalization was performed to mitigate the influence
of anomalous spikes in pollutant readings [42].

Feature selection was guided by correlation analysis and
domain relevance. Pearson correlation coefficients were calcu-
lated among features to avoid multicollinearity [43]. Dimen-
sionality reduction was evaluated using Principal Component
Analysis (PCA), though it was not ultimately employed in the
final model due to interpretability concerns.

For model consistency, features were scaled using min-
max normalization to a [0,1] range for tree-based models
and standardized using z-score for neural network inputs [44],
[45]. This ensured that all features contributed equally to the
learning process.

Finally, the datasets were divided using an 80:20 train-
test split to assess generalization. For time-series models like
LSTM, sliding window cross-validation was employed [46].
Stratified sampling ensured proportional pollutant distribution
across training and test sets, preventing model bias due to
seasonal pollution trends.

Figure 2 illustrates the end-to-end data preparation work-
flow, highlighting stages from collection to final model-ready
dataset formation.
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Fig. 2: Flowchart of Data Preprocessing Pipeline

IV. MACHINE LEARNING MODELS

This section presents the theoretical underpinnings and
implementation strategies of the five machine learning models
employed for predicting PM2.5 concentrations and Air Quality
Index (AQI) in urban settings. These models were selected
due to their widespread use in environmental time series
forecasting, predictive accuracy, and scalability. The models
evaluated are Linear Regression, Random Forest, Support
Vector Regression (SVR), XGBoost, and Long Short-Term
Memory (LSTM).

A. Linear Regression

Linear Regression serves as the baseline model for this
study. It assumes a linear relationship between independent
features and the dependent variable (PM2.5 or AQI). The
model minimizes the residual sum of squares between ob-
served and predicted values [47]. Despite its simplicity, Linear
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Regression is often useful for interpretability in environmental
modeling [48].

B. Random Forest

Random Forest (RF) is an ensemble learning method based
on bagging decision trees. It constructs multiple decision
trees during training and outputs the mean prediction of the
individual trees, thus reducing variance [49]. RF is robust
to multicollinearity and noise, and has demonstrated strong
performance in air pollution forecasting tasks [50].

C. Support Vector Regression (SVR)

SVR, a variant of Support Vector Machines, fits the data
within a specified error margin while maximizing the margin
between support vectors [51]. SVR’s ability to handle nonlin-
ear relationships through kernel functions makes it valuable
for modeling complex pollutant behavior [52].

D. XGBoost

Extreme Gradient Boosting (XGBoost) is an advanced
boosting technique based on decision trees. It employs a
gradient descent algorithm with regularization, leading to
improved model generalization [53]. XGBoost has been shown
to outperform traditional models in AQI and PM forecasting
due to its ability to capture complex nonlinear interactions
[54].

E. LSTM (Long Short-Term Memory)

LSTM networks are a special class of Recurrent Neural
Networks (RNNs) capable of learning long-term dependencies
in sequential data [55]. Due to the temporal nature of air
pollution data, LSTM is particularly effective for hourly and
daily PM2.5 forecasting [56]. The architecture includes input,
forget, and output gates that regulate the flow of information
across time steps [57].

FE. Hyperparameter Tuning

Each model’s predictive capacity depends significantly on
hyperparameter tuning. For traditional models like SVR and
Random Forest, grid search and random search were con-
ducted using 5-fold cross-validation [58]. For XGBoost, pa-
rameters such as learning rate, max_depth, and n_estimators
were fine-tuned using Bayesian optimization strategies to
minimize Root Mean Square Error (RMSE) [59].

For LSTM, tuning involved determining the optimal number
of layers, neurons, batch size, and learning rate using time-
series cross-validation. The Adam optimizer [60] and early
stopping criteria were employed to prevent overfitting. Ta-
ble IV summarizes the optimal hyperparameter configurations
used in the final models.

V. PERFORMANCE EVALUATION METRICS

To assess the accuracy and reliability of the machine
learning models used in forecasting PM2.5 and AQI levels,
four widely accepted performance evaluation metrics were
employed: Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), Coefficient of Determination (R* Score), and

TABLE IV: Optimal Hyperparameters for M. Models

Model Tuned Hyperparameters

Linear Regression
Random Forest

Regularization (Ridge: o =0.01)
n_estimators = 150, max_depth = 20

SVR Kernel = RBF, C = 10, € = 0.2
XGBoost learning_rate = 0.1, max_depth = 6, n_estimators = 300
LSTM 2 Layers, 64 Units, Batch Size = 32, Epochs = 50

Mean Absolute Percentage Error (MAPE). These metrics pro-
vide a comprehensive understanding of each model’s predic-
tive capabilities across different aspects of error quantification.

A. Root Mean Squared Error (RMSE)

RMSE is a commonly used measure that quantifies the
standard deviation of the prediction errors or residuals. It is
particularly sensitive to large errors due to the squaring of
the deviations, which makes it an effective metric when high
penalty for large errors is required [62]. RMSE is computed

as:
1 & 12
RMSE = ;Z(yi—yi)
i=1

where y; denotes the actual value, §; the predicted value,
and n the number of observations.

B. Mean Absolute Error (MAE)

MAE measures the average magnitude of the errors in a
set of predictions, without considering their direction. Unlike
RMSE, it does not penalize large errors more heavily and thus
offers a linear score that equally weights all errors [63]. It is
calculated as:

1 n R
MAE = — Y [yi 3
i=1

C. Coefficient of Determination (R* Score)

The R? score, also known as the coefficient of determina-
tion, evaluates how well the observed outcomes are replicated
by the model. An R? of 1 indicates a perfect fit, whereas an R?
of 0 suggests that the model performs no better than a mean
predictor [64]. It is defined as:

Z?:l(yi —yi)z
Y (vi—9)?

where y is the mean of the observed data.

RP=1-

D. Mean Absolute Percentage Error (MAPE)

MAPE expresses prediction accuracy as a percentage and is
particularly useful for comparing performance across different
scales [65]. However, it can be biased if actual values are close
to zero. The formula is:

100%

)}

i=1

yi—Ji
Yi

MAPE =
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TABLE V: Summary of Evaluation Metrics

Metric Advantage Limitation

RMSE Penalizes large errors Sensitive to outliers

MAE Easy to interpret Ignores error direction
R? Score | Indicates goodness-of-fit | Can be misleading in non-linear models
MAPE Scaled percentage error Undefined for y; =0

E. Metric Summary Table

Table V summarizes the characteristics, advantages, and
disadvantages of each metric used.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the effectiveness of the selected machine learn-
ing models—Linear Regression, Random Forest, Support Vec-
tor Regression (SVR), XGBoost, and LSTM—in forecasting
PM2.5 and AQI values, a series of experiments were conducted
on datasets collected from urban sensor stations. The results
were assessed using RMSE, MAE, R?, and MAPE as discussed
in Section VIIL.

A. Tabular Performance Comparison

Table VI presents a comparative summary of the model
performances on the test dataset. It reveals significant per-
formance variations among models across different metrics.

TABLE VI: Performance Comparison of ML Models on
PM2.5 and AQI Prediction

Model RMSE | MAE | R? Score | MAPE (%)
Linear Regression 35.62 28.74 0.69 19.45
Random Forest 22.15 16.30 0.87 11.04
SVR 26.74 20.25 0.82 14.72
XGBoost 18.94 14.20 0.90 9.38
LSTM 20.45 15.32 0.88 10.15

B. Discussion of Results

XGBoost consistently outperformed other models across
all evaluation metrics, demonstrating its ability to handle
non-linear dependencies and feature interactions effectively.
LSTM closely followed, leveraging temporal dependencies in
the data to enhance predictive accuracy. Random Forest also
showed strong performance, though slightly less accurate than
XGBoost in high-volatility conditions.

Linear Regression, despite its interpretability, showed lim-
ited accuracy, failing to capture non-linear behavior. SVR
struck a balance between simplicity and performance, but was
outpaced by ensemble and deep learning models.

C. Model Trade-offs and Interpretability

While XGBoost and LSTM yielded the best numerical
performance, they come with increased model complexity and
longer training times. LSTM, in particular, required careful
tuning of time-series hyperparameters and larger computa-
tional resources. Random Forest offered a favorable trade-off
with reasonable accuracy and faster training. On the other
hand, Linear Regression and SVR were computationally effi-
cient and interpretable, but lagged in performance, especially
during rapid pollution fluctuations.

D. Performance Under Varying Conditions

Performance variability under different pollution conditions
was also observed. On high pollution days (AQI > 200),
LSTM marginally outperformed XGBoost due to its temporal
memory structure. However, XGBoost proved more stable
across varying pollution levels and better captured sudden
peaks. Linear models, in contrast, struggled to adapt to such
dynamic conditions, often underestimating extreme pollution
events.

These findings highlight the practical trade-offs between
model complexity, interpretability, and robustness in real-
world smart city air quality applications. Selecting a suitable
model thus depends on the specific deployment context, com-
putational resources, and accuracy requirements.

VII. DISCUSSION

The results obtained from the comparative study of machine
learning models for forecasting PM2.5 and AQI levels offer
valuable insights for environmental policymakers, urban plan-
ners, and smart city architects. The demonstrated superiority
of ensemble models such as XGBoost and deep learning
approaches like LSTM suggests their potential deployment
in real-time monitoring systems where predictive accuracy is
paramount.

A. Implications for Policymakers and Urban Planners

Accurate forecasting of air pollution levels enables proactive
decision-making. For instance, early warnings about high
pollution days allow authorities to implement temporary re-
strictions on vehicular traffic, industrial activity, and public
events. Table VII outlines some potential applications of model
outputs in urban policy.

TABLE VII: Model Output Implications for Urban Planning

Model Insight

PM2.5 spike forecasted in next
24 hours

Persistent high AQI in specific
zones

Temporal pollution trends

Policy Application

Pre-emptive traffic control, indus-
trial curbs

Targeted afforestation or zoning re-
vision

School closure or work-from-home
advisories

Long-term air quality management
plans

Improved seasonal forecasts

The integration of ML-based forecasting into urban
decision-making tools also supports the transition towards
climate-resilient infrastructure. By coupling predictive outputs
with IoT-enabled air quality sensors, cities can automate
alerts and dynamically respond to deteriorating environmental
conditions.
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B. Integration in Smart City Ecosystems

From a technological standpoint, the high-performing mod-
els can be embedded into real-time data pipelines within
smart city infrastructure. Through RESTful APIs, prediction
services can be connected to traffic management systems,
digital signage for public notifications, and mobile applications
for citizen awareness. Furthermore, the ability of LSTM to
capture time-dependent pollution trends makes it suitable for
continuous learning systems that adapt as new data arrives.
These integrations are crucial for cities aiming to meet sus-
tainability and livability targets.

C. Challenges and Limitations

Despite encouraging results, several challenges were en-
countered during model development and evaluation. First,
**data quality and availability** posed a significant issue.
Public datasets often suffer from missing entries, inconsistent
formats, and lack of harmonization across regions. Rigorous
preprocessing and interpolation techniques were essential to
ensure robustness.

Second, seasonality and meteorological variability intro-
duced noise into the prediction process. Pollution levels are
heavily influenced by seasonal patterns—such as winter smog
or summer dust storms—which are not always captured well
by general-purpose models unless seasonally adjusted training
is conducted.

Third, regional differences in pollution sources (e.g., indus-
trial vs. vehicular emissions) limit the transferability of models
trained in one city to another. This regional heterogeneity
necessitates localized training and retraining, increasing op-
erational complexity.

Overall, while machine learning models show strong
promise in predictive air quality analytics, attention must be
paid to underlying data quality, environmental variability, and
deployment constraints to achieve scalable, real-time impact
in smart city environments.

VIII. CONCLUSION

This study conducted a comprehensive comparative analysis
of several machine learning models—Linear Regression, Ran-
dom Forest, Support Vector Regression (SVR), XGBoost, and
Long Short-Term Memory (LSTM)—for forecasting PM2.5
concentrations and Air Quality Index (AQI) values in the
context of smart cities. By utilizing datasets from open-
source platforms and governmental air quality monitoring
agencies, the research applied robust preprocessing and eval-
uation methodologies to ensure accuracy, generalizability, and
relevance.

The results clearly demonstrated that ensemble methods
such as XGBoost outperformed other models across key met-
rics including RMSE, MAE, R2, and MAPE. LSTM models
also yielded strong results, particularly in capturing temporal
dependencies, but came with higher computational costs and
deployment complexity. Simpler models like Linear Regres-
sion and SVR, although interpretable, failed to adequately

model the non-linear and seasonal characteristics of air pollu-
tion data.

Based on both performance outcomes and deployment fea-
sibility, XGBoost is recommended as the most effective model
for integration into real-time smart city systems due to its bal-
ance between accuracy, speed, and adaptability. Additionally,
the study highlights the importance of data quality, the need for
regional customization, and the value of predictive analytics
in shaping proactive environmental policies.

The findings offer actionable insights for urban planners,
environmental agencies, and technology developers aiming
to build intelligent air quality management solutions. This
research serves as a foundation for deploying scalable machine
learning-driven frameworks for environmental monitoring and
reinforces the role of data science in achieving sustainable
urban living.

IX. FUTURE WORK

While the current study establishes a robust foundation for
machine learning-based air quality forecasting, several avenues
remain open for future research and system enhancement.
One promising direction is the incorporation of additional
data sources such as meteorological variables and satellite-
derived parameters. Integrating factors like solar radiation,
boundary layer height, wind direction, and aerosol optical
depth could improve model generalizability across seasons
and climatic zones, capturing more complex environmental
interactions influencing PM2.5 and AQI levels.

Another significant advancement involves the deployment of
real-time AQI prediction systems at the edge. Leveraging edge
computing frameworks would allow localized, low-latency
predictions directly on sensor networks or urban IoT devices.
This would not only reduce dependency on centralized cloud
infrastructure but also enable immediate response mecha-
nisms—such as automated alerts or localized traffic rerout-
ing—particularly vital for densely populated urban regions.

Furthermore, exploration of deep ensemble and hybrid
learning models presents a compelling direction. By combin-
ing the strengths of multiple base learners, such as LSTM with
gradient boosting trees or CNNs with attention mechanisms,
these models could potentially yield improved robustness
against noisy data and abrupt environmental shifts. Attention-
based models in particular offer explainability, which is crit-
ical for deployment in public systems where transparency is
required.

Scaling the system across multiple cities introduces addi-
tional complexities due to regional heterogeneity in pollution
sources, topography, and policy constraints. To address this,
adaptive learning frameworks capable of transferring knowl-
edge between cities or continuously learning from streaming
data would be essential. This could include transfer learning,
online learning, or federated learning paradigms to accom-
modate diverse and dynamic urban environments without
retraining models from scratch.

Table VIII summarizes these directions and their intended
benefits.
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TABLE VIII: Proposed Future Directions and Impact

Future Work

Expected Benefit

Integration of meteorological and
satellite data

Edge-based real-time AQI predic-
tion

Hybrid and deep ensemble models

Enhanced model accuracy and seasonal
adaptability
Low-latency forecasting and immediate
local action
Increased robustness and improved gen-

eralization
Scalability across cities with adap- | Regional customization and system ex-
tive learning tensibility
In conclusion, the fusion of rich environmental data, cutting-  [22] M. Singh and R. Yadav, “Air quality forecasting using machine learn-
edge modeling techniques, and scalable deployment infras- ‘3“639’;3]53“&’;907““;%‘;81 Science and Pollution Research, vol. 27, pp.
tructure.holds the potential to revolgthglze urban a.lr quality [23] A. Gupta and S. R. Sharma, “Forecasting urban air quality using deep
forecasting. Future efforts should prioritize system interoper- learning,” Procedia Computer Science, vol. 152, pp. 198-205, 2019.
ability, public interpretability, and long-term sustainability to  [24] IS G*.mht etha!" “A,,r%“e;” Iorli forecas?“gzmr p10(§11uztg;n ;812“154 machine
. .. . o earning techniques,” Ecol. Inform., vol. 62, p. R .
fully realize the vision of smart, healthy, and pollution-resilient [25] X. Li et al., “Air quality prediction using hybrid deep learning model,”
cities. IEEE Access, vol. 10, pp. 7754-7765, 2022.
[26] L. Yang et al., “Prediction of air quality using LSTM neural network,”
Proc. Int. Conf. on Big Data Analysis, 2018.
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