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Abstract—Air pollution has emerged as a pressing challenge
in rapidly urbanizing regions, demanding accurate and timely
forecasting solutions to mitigate its adverse health impacts.
This study presents a comprehensive Al-driven framework that
integrates multisource environmental data—comprising satellite
imagery, ground-level sensors, meteorological inputs, and mobile
IoT devices—for enhanced air quality forecasting in urban
settings. Leveraging advanced deep learning models, particularly
LSTM and Transformer-based architectures, the system captures
complex spatio-temporal patterns in pollutant behavior. A key
innovation of this work lies in its data fusion strategy, which
synchronizes heterogeneous data streams to improve prediction
reliability. Furthermore, the model incorporates a health risk
assessment module that translates pollutant forecasts into ac-
tionable health indicators based on population demographics and
WHO-defined exposure thresholds. Experimental results across
multiple urban zones demonstrate significant improvements in
predictive accuracy when compared to traditional statistical
models, with RMSE reductions exceeding 20%. The system also
offers real-time responsiveness through edge-enabled deployment,
ensuring low latency in high-density urban environments. By
bridging the gap between environmental sensing and public
health analytics, this work contributes to smarter urban planning,
policy intervention, and personalized health alerts. The proposed
approach not only advances the technological frontiers of air
quality monitoring but also provides a scalable model for inte-
gration within smart city ecosystems.

Keywords—Air Quality Forecasting, Multisource Data Fusion,
Health Risk Assessment, Smart City, Edge Computing.

I. INTRODUCTION

Air quality has become a central public health and environ-
mental concern due to rapid urbanization, industrial growth,
and increasing vehicular emissions in metropolitan regions
across the globe. Poor air quality is directly linked to a rise in
respiratory and cardiovascular ailments, premature mortality,
and diminished quality of life [1], [2]. Traditional air quality
monitoring systems primarily depend on static ground-based
stations that are often sparsely distributed and limited in
temporal granularity. Such limitations restrict the ability to
capture localized pollution variations in real time and hinder
effective policy response or individual health risk mitigation
(31, [4].

Conventional statistical models for Air Quality Index (AQI)
forecasting, such as ARIMA or simple regression models,
often fall short in capturing the non-linear and dynamic nature
of air pollution behavior influenced by diverse environmental
and anthropogenic factors [5]. Additionally, most existing
frameworks focus on single-source datasets—either ground

sensors or meteorological inputs—neglecting the potential
synergy of multisource data integration [6]. These models
often lack adaptability to real-time environmental changes
and cannot be efficiently scaled for smart city applications
requiring low-latency decision-making.

To address these challenges, this research proposes an Al-
powered framework for real-time urban air quality forecasting
that utilizes a fusion of heterogeneous environmental data
sources. Specifically, the system incorporates inputs from
ground-level pollution sensors, meteorological data streams,
satellite-based aerosol observations (e.g., Sentinel-5P), and
mobile IoT devices [7], [8]. By employing deep learning mod-
els, particularly Long Short-Term Memory (LSTM) networks
and Transformer-based spatio-temporal models, the framework
captures intricate patterns and dependencies in air quality
dynamics across both space and time [9], [42].

A distinctive component of the proposed system is its
integration of a health risk assessment module that maps pre-
dicted pollutant concentrations to health impact levels, using
exposure thresholds defined by global health agencies such as
the WHO [11]. This component considers population density,
age distribution, and historical morbidity data to provide area-
specific health alerts and risk scores [47].

The key contributions of this paper are as follows:

« A novel multisource data fusion architecture combining
IoT sensor readings, meteorological data, and satellite
imagery for enriched AQI prediction.

o Deployment of advanced AI models that outperform
traditional methods in terms of forecasting accuracy and
spatio-temporal adaptability.

o A health risk quantification layer that interprets Al out-
puts into actionable health insights.

« Edge-compatible smart city deployment, enabling real-
time air quality alerts for policy makers, urban planners,
and the general public.

Fig. 1 illustrates the proposed system architecture. The
fusion layer aggregates and synchronizes data from diverse
sources, which is then fed into Al models for prediction. The
forecasting results trigger the health risk assessment module,
with outputs displayed on a user dashboard and public portals.

The remainder of this paper is organized as follows: Section
IT reviews related work, Section III details the proposed
methodology, Section IV presents experimental results and
evaluation, and Section V concludes with future research
directions.
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Fig. 1: System architecture for multisource Al-based AQI
forecasting and health risk assessment

II. RELATED WORK

The challenge of accurately forecasting air quality has been
extensively explored through both traditional statistical mod-
els and modern Al-based techniques. Historically, methods
such as AutoRegressive Integrated Moving Average (ARIMA),
Multiple Linear Regression (MLR), and Kalman Filtering have
been widely used for Air Quality Index (AQI) prediction
[41], [43], [18]. While these approaches are computationally
efficient, they often fall short in modeling the nonlinear and
spatio-temporal dynamics of pollutant dispersion, especially
under changing meteorological conditions [19].

With the rise of data-driven methodologies, machine learn-
ing (ML) and deep learning (DL) models have gained substan-
tial attention for their superior performance in environmental
forecasting tasks. Support Vector Machines (SVM), Random
Forests (RF), and Gradient Boosting methods have been
employed to enhance prediction accuracy of PM; 5 and NO»
levels [44], [21], [40]. Deep learning techniques, particularly
Recurrent Neural Networks (RNN), Long Short-Term Memory

(LSTM), and Convolutional Neural Networks (CNN), have
been explored for their ability to capture temporal trends
and spatial heterogeneity in large-scale environmental datasets
[45], [37], [42]. Transformer architectures, initially designed
for natural language processing, have recently been repurposed
for air quality forecasting due to their attention mechanisms,
which help model long-range dependencies [26].

Parallel to advancements in AQI prediction, several studies
have focused on understanding the health implications of air
pollution exposure. Researchers have used epidemiological
models to link prolonged PM,s and O3 exposure with in-
creased risks of asthma, stroke, and premature death [27],
[48], [46]. Moreover, data fusion techniques integrating en-
vironmental and health records have allowed the creation of
localized health risk indices, especially in urban hotspots [47],
[31].

However, most of the existing models operate on either
static sensor data or siloed datasets, without effectively in-
tegrating multisource inputs such as satellite imagery, mobile
IoT sensor data, and meteorological features. Satellite-based
pollution monitoring using instruments like Sentinel-5P has
shown promise for expanding spatial coverage, but such data
is often underutilized due to latency and complexity of in-
terpretation [32], [38]. Furthermore, only a few studies have
considered the real-time deployment of these models in edge
computing environments suitable for smart city applications
[39], [36].

In summary, while significant strides have been made in
leveraging Al for AQI forecasting and health impact analysis,
gaps persist in terms of unified frameworks that combine
heterogeneous data sources, real-time responsiveness, and
health outcome prediction. This paper aims to bridge this gap
by proposing an integrated Al-driven platform for real-time
AQI forecasting and health risk assessment using multisource
environmental data and deep learning models.

III. METHODOLOGY

This section elaborates on the architectural design, data
acquisition strategies, preprocessing pipeline, fusion mech-
anisms, forecasting models, and the health risk assessment
framework of the proposed Al-driven multisource air quality
prediction system.

A. System Architecture

The architecture of the proposed system integrates multiple
data sources with intelligent forecasting and risk assessment
modules to enable real-time and accurate urban air quality
monitoring. As illustrated in Fig. 1, data from heterogeneous
sources including ground sensors, meteorological APIs, mo-
bile IoT devices, and satellites are collected, preprocessed, and
passed to Al-based forecasting engines. These predictions are
then utilized by a health risk assessment module to generate
population-specific alerts.

B. Data Sources

To enhance the spatial and temporal resolution of air quality
predictions, the system integrates diverse data streams:
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Fig. 2: System Architecture: Multisource AQI forecasting and health assessment

« Ground sensors: Static stations measuring PM; 5, NO,, C. Preprocessing Pipeline

and CO concentrations [36].

« Meteorological APIs: External weather APIs supply
temperature, humidity, wind speed, and pressure data
which significantly influence pollutant dispersion [37].

« Satellite Imagery: Sentinel-5P provides tropospheric
pollution estimates (e.g., NO;,, CO) via the TROPOMI

instrument [38].

Due to heterogeneity in frequency, format, and resolution,
data undergoes rigorous preprocessing. Missing values are in-
terpolated using forward and backward fill techniques. Sensor
readings are normalized using min-max scaling. Time-series
data are synchronized into unified temporal windows. Feature
engineering incorporates derived attributes such as pollutant
interaction terms and wind-corrected concentrations [40].

o Mobile IoT Sensors: Data from drones and vehicular
networks enable fine-grained, localized sensing [39]. D. Data Fusion Strategy

To effectively synthesize multi-resolution and asynchronous
data, a hybrid spatio-temporal fusion strategy is adopted.
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Kalman Filtering is employed for time-series smoothing [41],
while Graph Neural Networks (GNNs) are used to encode
spatial dependencies among sensing nodes [42]. This dual-
fusion method balances real-time adaptability and predictive
fidelity.

E. Forecasting Models

The system evaluates both traditional and deep learning-
based models. Baseline models include ARIMA and Random
Forest due to their interpretability and robustness [43], [44].
Advanced methods include:

o LSTM: Suitable for sequential data and capturing long-
range dependencies [37].

o Transformer: Incorporates self-attention for spatio-
temporal dynamics [26].

¢ CNN-LSTM Hybrid: Combines convolutional layers for
spatial extraction and LSTM for temporal modeling [45].

Each model is evaluated using RMSE, MAE, and R? scores

across multiple cities.

FE. Health Risk Assessment Module

This module quantifies the health impact of pollution expo-
sure based on WHO thresholds [46]. Pollutant concentrations
are mapped to risk levels (low, moderate, high, severe). The
system categorizes risks dynamically based on age group,
geolocation, and comorbidity indicators, enabling personalized
and location-specific alerts [47], [48]. Table I illustrates this
risk classification.

TABLE I: AQI-Based Health Risk Categories (Adapted from
WHO Guidelines)

AQI Range | Risk Level Recommended Action
0-50 Low Normal outdoor activity
51-100 Moderate Sensitive groups limit exposure
101-150 High General public reduce outdoor time
151+ Severe Stay indoors, use air purifiers

IV. RESULTS AND DISCUSSION
A. Experimental Setup

The experimental framework for this study was established
by integrating datasets from various sources, including ground
monitoring stations, satellite imagery, and mobile IoT devices.
The cities of Delhi and Mumbai were selected for case
studies due to their high pollution levels and availability
of comprehensive sensor data. Data spanning from January
2022 to December 2023 was compiled, incorporating hourly
measurements of PM2.5, NO;, and CO levels, alongside
meteorological parameters such as humidity, temperature, and
wind speed.

All models were trained and evaluated on a system equipped
with an Intel Xeon Gold 5218 processor, 128 GB RAM,
and an NVIDIA Tesla V100 GPU. Model evaluation metrics
included Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), and the Coefficient of Determination (R?)
for forecasting accuracy. The performance of the health risk
module was assessed using accuracy and Fl-score, derived

from pollutant-to-risk mappings against WHO health exposure
thresholds.

B. Model Performance

Table II summarizes the performance of baseline and ad-
vanced models on the PM2.5 forecasting task. Among the
models tested, the CNN-LSTM hybrid exhibited superior
performance across all evaluation metrics, indicating its ro-
bustness in learning both spatial and temporal features.

TABLE II: Comparative Forecasting Performance for PM2.5
Levels

Model MAE (ug/m’) | RMSE (ug/m’) | R* Score
ARIMA 17.3 24.5 0.71
Random Forest 12.8 18.9 0.82
LSTM 9.7 14.6 0.88
Transformer 9.2 13.4 0.90
CNN-LSTM Hybrid 8.5 12.6 0.92

Figure 3 shows the timeline-based comparison of actual
versus predicted PM2.5 values using the CNN-LSTM model
for the Delhi region over a two-week window. The model
demonstrated a close approximation to ground truth values,
especially during peak pollution events.

C. Case Studies

To evaluate the model’s real-world applicability, a deploy-
ment prototype was simulated for Delhi and Mumbai. Using
integrated data from fixed ground stations, mobile vehicular
sensors, and Sentinel-5P satellite feeds, AQI heatmaps were
generated dynamically. Figure 4 displays a heatmap of pre-
dicted PM2.5 levels across key urban sectors of Delhi.

Additionally, the health risk assessment module provided
risk categorization based on age groups and geographical
location. Alerts were generated for vulnerable populations,
including elderly residents and children, with dynamic notifi-
cations sent through a mobile application. Table III illustrates
a sample of health risk outputs.

TABLE III: Sample Health Risk Predictions (Delhi, Nov 2023)

Region | AQI Level | Vulnerable Group | Health Risk
Rohini 286 Children High
Dwarka 315 Elderly Very High
Saket 179 General Public Moderate

D. Discussion

The experimental findings validate the efficacy of deep
learning-based approaches, particularly CNN-LSTM, in fore-
casting air quality with high temporal resolution. The Trans-
former model also showed promising results, although slightly
inferior to the CNN-LSTM in terms of RMSE.

Several key insights emerged from the study:

o The integration of multi-source data (spatial and tempo-
ral) significantly improved forecasting accuracy.

e The dynamic risk assessment module enabled targeted
alerts, improving public health responsiveness.
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Fig. 4: Predicted PM2.5 Heatmap for Delhi Region

o Performance was robust during typical days but slightly
degraded during unanticipated weather disturbances (e.g.,
dust storms), indicating a limitation in capturing extreme
variance.

Challenges included dealing with data sparsity from mobile
sensors and satellite latency. Moreover, the requirement for
high computational resources for training Transformer-based
models limits real-time scalability in low-resource environ-
ments.

Despite these limitations, the proposed framework provides
a scalable and intelligent system for urban air quality forecast-

ing and public health advisory, setting a foundation for future
smart city applications.

V. CONCLUSION

This research presented a comprehensive Al-driven frame-
work for real-time urban air quality forecasting and health
risk assessment through the integration of multisource data,
including ground-based sensors, satellite imagery, meteoro-
logical information, and mobile IoT platforms. Addressing
the limitations of single-source and static forecasting systems,
our proposed architecture harnessed the power of deep learn-
ing—particularly hybrid CNN-LSTM models—and spatio-
temporal data fusion techniques to generate high-fidelity air
pollution predictions across urban environments.

The experimental results demonstrated that the CNN-LSTM
model outperformed traditional and standalone machine learn-
ing methods, achieving an MAE of 8.5 ug/m? and an R? score
of 0.92 in PM2.5 forecasting. Moreover, our health risk as-
sessment module enabled real-time public health advisories by
mapping pollutant concentrations to risk levels for vulnerable
populations based on WHO thresholds. The deployment case
studies in Delhi and Mumbai further validated the model’s
practical utility by providing dynamic AQI heatmaps and
targeted alerts via mobile applications.

From a societal perspective, this work contributes to the
evolving paradigm of smart city infrastructure by empow-
ering municipal authorities and healthcare stakeholders with
actionable insights for air pollution mitigation and public
health preparedness. The modularity of our system ensures
adaptability across various urban contexts, paving the way
for broader adoption. Future directions include incorporating
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TABLE 1V: Planned Extensions for Future Work

Future Direction

Description and Implementation Strategy

Edge Computing Integration

Deploy CNN-LSTM lite models on edge devices for on-site AQI inference.
Reduce reliance on cloud infrastructure.

Citizen Alert System

Develop a mobile-based notification platform integrated with GPS and health
databases for personalized air quality alerts.

Long-Term Health Modeling

Apply survival analysis and deep risk modeling techniques to track and predict
chronic health outcomes from pollution exposure.

Rural and Industrial Expansion

Collect and integrate data from non-urban zones, including agricultural sensors
and industrial air monitoring systems.

edge Al for decentralized processing, enhancing extreme event
forecasting, and integrating citizen feedback mechanisms for
participatory environmental governance.

VI. FUTURE WORK

While the proposed Al-driven multisource forecasting
framework has shown significant promise in improving the
accuracy and timeliness of urban air quality predictions, sev-
eral opportunities exist for future enhancement and scalability.
A key area for further exploration is the deployment of edge
computing architectures to facilitate faster and decentralized
inference. By integrating lightweight models into edge de-
vices—such as on-board processing units within vehicular sen-
sors or drones—latency in data transmission can be minimized,
enabling near-instantaneous AQI predictions at the point of
measurement.

Another promising direction is the development of a citizen-
centric alert system that integrates mobile applications and
wearable technologies to disseminate personalized health no-
tifications. This would empower residents with real-time ex-
posure insights based on their geolocation, activity patterns,
and individual health profiles, fostering a more participatory
approach to air quality management.

Moreover, future iterations of the health risk assessment
module will incorporate long-term health impact modeling
using longitudinal health datasets. Machine learning models
such as survival analysis and recurrent risk scoring algorithms
could be employed to evaluate the cumulative effects of pro-
longed pollutant exposure, particularly for chronic respiratory
and cardiovascular conditions.

Additionally, the current study focuses primarily on urban
megacities. Future work will expand the system’s geographical
scope to include rural regions and industrial belts, which are
often underrepresented in air quality research despite their
significant pollution burdens. This will involve the incorpora-
tion of localized data sources such as agricultural emissions,
industrial discharge sensors, and rural meteorological stations.

To summarize the next-phase research roadmap, Table IV
outlines the key directions and corresponding implementation
strategies.

Collectively, these future directions will significantly en-
hance the scalability, responsiveness, and societal relevance
of the proposed air quality forecasting and health advisory
system.

[1]
[2]
[3]
[4]
[5]

[6]
[7]

[8]
[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

(22]

[23]

REFERENCES

World Health Organization, “Ambient Air Pollution: A Global Assess-
ment of Exposure and Burden of Disease,” WHO, 2018.

X. Li et al., “Air quality prediction using multimodal data and machine
learning: A review,” Environmental Research, vol. 194, 2021.

P. Gupta et al., “Air pollution mapping using satellite data and ground-
based observations in India,” Remote Sensing, vol. 10, no. 4, 2018.

Y. Zheng et al., “U-Air: When urban air quality inference meets big
data,” in Proc. KDD, 2013, pp. 1436-1444.

A. Singh and M. Chauhan, “Comparative analysis of machine learning
models for air quality forecasting,” Procedia Computer Science, vol.
167, 2020.

J. Cheng et al., “AirNet: A hybrid CNN-based deep learning model for
air quality prediction,” Neurocomputing, vol. 337, pp. 1-8, 2019.

H. Kaur et al., “ToT-based smart air quality monitoring systems: A
review,” Environmental Monitoring and Assessment, vol. 193, no. 4,
2021.

K. Zhang et al., “Deep learning models for air quality prediction: A
survey,” Atmosphere, vol. 13, no. 3, 2022.

Y. Wang et al., “Deep learning for air quality forecasting: A review,”
Current Pollution Reports, vol. 5, pp. 399-411, 2019.

Y. Zhang et al., “A Transformer-based model for spatio-temporal air
quality forecasting,” IEEE Access, vol. 9, pp. 14910-14922, 2021.

H. Chen et al., “Health impacts of PM2.5 air pollution in China,” Science
of the Total Environment, vol. 612, pp. 683-689, 2018.

J. Kim and M. Jung, “Public health risk assessment from exposure to
fine particulate matter (PM2.5),” International Journal of Environmental
Research and Public Health, vol. 18, no. 2, 2021.

Y. Liu et al., “Satellite-based estimation of urban PM2.5 concentrations
using ensemble learning methods,” Remote Sensing of Environment, vol.
237, 2020.

R. Sharma and N. Kumar, “Edge computing for real-time air quality
monitoring in smart cities,” IEEE Internet of Things Journal, vol. 7, no.
8, pp. 7451-7460, 2020.

S. Garg et al., “A smart city framework for air quality monitoring using
hybrid data fusion and Al,” Journal of Cleaner Production, vol. 344,
2022.

J. Yi, H. Wu, and Y. Wang, “Application of Kalman filtering for real-
time air quality forecasting,” Atmospheric Environment, vol. 45, no. 35,
pp. 6151-6156, 2011.

M. Singh, A. Chauhan, and A. Srivastava, “ARIMA-based modeling and
forecasting of air pollution in India,” Indian Journal of Environmental
Protection, vol. 33, no. 6, 2013.

T. Feng and M. Zhang, “Regression analysis of air quality and meteoro-
logical factors in Beijing,” Ecological Indicators, vol. 48, pp. 491-497,
2015.

K. Shaban et al., “Machine learning applications for air quality moni-
toring and prediction: A review,” Environmental Modelling & Software,
vol. 80, pp. 1-19, 2016.

B. Zhao et al., “A random forest approach for real-time air quality
prediction in smart cities,” Sensors, vol. 18, no. 10, 2018.

X. Liang and L. Zhang, “SVM-based air quality prediction for urban
monitoring,” Environmental Science and Pollution Research, vol. 22, pp.
7607-7614, 2015.

F. Cheng et al., “Air pollution prediction using XGBoost-based feature
importance and ensemble learning,” Applied Sciences, vol. 8, no. 11,
2018.

Y. Wang et al., “Air quality prediction using CNN-LSTM models with
multiple data sources,” Science of the Total Environment, vol. 651, pp.
2387-2396, 2019.

@ https://jsiar.com
¥ editor@isiar.com

© 2025 JSIAR



Journal of Scientific Innovation and Advanced Research (JSIAR) 2025

[24]
[25]
[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

J. Li et al., “DeepAQ: A deep learning framework for real-time air
quality forecasting,” Information Sciences, vol. 553, pp. 176-190, 2021.
Y. Zhang et al., “A Transformer-based model for spatio-temporal air
quality forecasting,” IEEE Access, vol. 9, pp. 14910-14922, 2021.

Z. Wu et al., “Transformer-based attention networks for air pollution
forecasting,” Atmospheric Pollution Research, vol. 13, no. 5, 2022.

C. A. Pope III et al., “Lung cancer, cardiopulmonary mortality, and long-
term exposure to fine particulate air pollution,” JAMA, vol. 287, no. 9,
pp. 1132-1141, 2002.

Y. Cai et al., “Association between ambient ozone pollution and daily
respiratory morbidity in urban China: A time-series study,” BMJ Open,
vol. 7, no. 8, €015509, 2017.

R. Burnett et al., “Global estimates of mortality associated with long-
term exposure to outdoor fine particulate matter,” PNAS, vol. 115, no.
38, pp. 9592-9597, 2018.

J. Kim and M. Jung, “Public health risk assessment from exposure to
fine particulate matter (PM2.5),” International Journal of Environmental
Research and Public Health, vol. 18, no. 2, 2021.

Y. Zhang et al., “Urban air quality mapping using low-cost sensors and
data fusion techniques,” Remote Sensing, vol. 12, no. 2, 2020.

Y. Liu et al., “Satellite-based estimation of urban PM2.5 concentrations
using ensemble learning methods,” Remote Sensing of Environment, vol.
237, 2020.

J. Martins et al., “Using Sentinel-5P data for monitoring air quality in
Europe: A case study,” Science of the Total Environment, vol. 739, 2020.
R. Sharma and N. Kumar, “Edge computing for real-time air quality
monitoring in smart cities,” IEEE Internet of Things Journal, vol. 7, no.
8, pp. 7451-7460, 2020.

Z. Yu et al., “Edge Al for real-time environmental monitoring in smart
cities,” IEEE Transactions on Industrial Informatics, vol. 18, no. 4, pp.
2724-2733, 2022.

Z. Yu et al., “Edge Al for real-time environmental monitoring in smart
cities,” IEEE Transactions on Industrial Informatics, vol. 18, no. 4, pp.
2724-2733, 2022.

J. Li et al.,, “DeepAQ: A deep learning framework for real-time air
quality forecasting,” Information Sciences, vol. 553, pp. 176—190, 2021.
J. Martins et al., “Using Sentinel-5P data for monitoring air quality in
Europe: A case study,” Science of the Total Environment, vol. 739, 2020.
R. Sharma and N. Kumar, “Edge computing for real-time air quality
monitoring in smart cities,” IEEE Internet of Things Journal, vol. 7, no.
8, pp. 7451-7460, 2020.

F. Cheng et al., “Air pollution prediction using XGBoost-based feature
importance and ensemble learning,” Applied Sciences, vol. 8, no. 11,
2018.

J. Yi, H. Wu, and Y. Wang, “Application of Kalman filtering for real-
time air quality forecasting,” Atmospheric Environment, vol. 45, no. 35,
pp. 6151-6156, 2011.

Y. Zhang et al., “A Transformer-based model for spatio-temporal air
quality forecasting,” IEEE Access, vol. 9, pp. 14910-14922, 2021.

M. Singh et al., “ARIMA-based modeling and forecasting of air pollution
in India,” Indian Journal of Environmental Protection, vol. 33, no. 6,
2013.

B. Zhao et al., “A random forest approach for real-time air quality
prediction in smart cities,” Sensors, vol. 18, no. 10, 2018.

Y. Wang et al., “Air quality prediction using CNN-LSTM models with
multiple data sources,” Science of the Total Environment, vol. 651, pp.
2387-2396, 2019.

R. Burnett et al., “Global estimates of mortality associated with long-
term exposure to outdoor fine particulate matter,” PNAS, vol. 115, no.
38, pp. 9592-9597, 2018.

J. Kim and M. Jung, “Public health risk assessment from exposure to
fine particulate matter (PM2.5),” International Journal of Environmental
Research and Public Health, vol. 18, no. 2, 2021.

Y. Cai et al., “Association between ambient ozone pollution and daily
respiratory morbidity in urban China: A time-series study,” BMJ Open,
vol. 7, no. 8, e015509, 2017.

aan
dmn
S

https://jsiar.com

¥ editor@isiar.com

© 2025 JSIAR



