

Impact of Deteriorating Air Quality on Human Life Expectancy: A Comparative Study Between Urban and Rural Regions

Gaurav Sharma *, Karan Singh†

*†Department of Information Technology

*†Noida Institute of Engineering and Technology, Greater Noida, India

Email: *jewargaurav@gmail.com

Abstract—Air pollution has emerged as one of the most pressing environmental health risks globally, with adverse implications for human longevity. This study presents a comprehensive comparative analysis of the impact of deteriorating air quality on human life expectancy across urban and rural regions. The objective is to assess how spatial disparities in pollutant exposure—particularly concerning PM_{2.5}, PM₁₀, and other airborne toxins—correlate with variations in average life spans. Utilizing a multi-source dataset comprising satellite-based aerosol data, ground-based air quality monitoring records, and demographic health statistics, we conducted a region-wise evaluation of pollution-induced health deterioration. Regression analysis, correlation models, and comparative visualization techniques were employed to quantify the extent to which air quality degradation influences mortality rates in different settings. Our findings reveal a significant disparity: while urban centers experience higher pollutant concentrations due to industrialization and vehicular emissions, rural areas suffer from prolonged exposure to biomass combustion and limited healthcare access, leading to underreported yet serious health consequences. Notably, the decline in life expectancy attributed to poor air quality shows a measurable pattern in both demographics, albeit through different environmental and socioeconomic pathways. The study highlights the urgent need for tailored air quality management policies that address region-specific risk factors and promote equitable health interventions. The comparative approach enriches existing literature by emphasizing that the impact of air pollution is not solely an urban phenomenon but a pervasive national challenge. This research lays the foundation for future exploration into localized mitigation strategies and real-time air quality-health monitoring systems.

Keywords—Air Quality, Life Expectancy, PM_{2.5}, Urban vs. Rural, Public Health, Environmental Risk, Mortality, Pollution

I. INTRODUCTION

Air pollution has become a leading environmental determinant of premature mortality and morbidity worldwide. According to the World Health Organization (WHO), over 7 million deaths annually are attributed to exposure to ambient and household air pollutants [28]. Fine particulate matter, particularly PM_{2.5}, along with nitrogen dioxide (NO₂) and ground-level ozone (O₃), pose severe risks to respiratory and cardiovascular health [2], [37]. In recent decades, urbanization and industrialization have exacerbated air quality deterioration in densely populated regions, while rural areas have often remained underrepresented in air quality studies despite their significant exposure to indoor biomass emissions and agricultural pollutants [38], [40].

A growing body of evidence suggests that air pollution reduces average life expectancy, with urban populations typically

more exposed to vehicular emissions, construction dust, and industrial outputs [6], [49]. Conversely, rural populations are often exposed to indoor pollutants from traditional cooking fuels and suffer from a lack of access to real-time pollution monitoring and quality healthcare services [45], [46]. These systemic differences warrant a regionally stratified analysis to understand the true burden of air pollution across diverse populations.

This research aims to conduct a comparative study to analyze the impact of deteriorating air quality on human life expectancy in urban and rural regions. We utilize a multi-source dataset comprising satellite-derived air quality indices, ground-station data, and demographic health records from national and global repositories [34], [41]. By applying correlation analysis and regression modeling techniques, we assess how pollution levels correspond with changes in mortality patterns and average life spans across the two domains.

The study has three major objectives: (i) to quantify the differential exposure levels of urban and rural populations to key pollutants such as PM_{2.5}, NO₂, and SO₂, (ii) to evaluate the corresponding variations in life expectancy, and (iii) to identify socio-environmental factors contributing to these disparities. This research provides a holistic view of the spatial inequalities in pollution impact and sheds light on vulnerable population clusters.

Our primary contribution is the regionally comparative quantification of life expectancy reductions attributable to air pollution, highlighting the often-overlooked burden on rural populations. Additionally, we propose a framework for integrating region-specific policies and real-time environmental-health monitoring systems for both urban and rural development plans.

In sum, this paper contributes to the growing dialogue on environmental justice by illuminating spatial disparities in pollution-induced health outcomes, supporting a more equitable and data-driven approach to environmental policy design.

II. LITERATURE REVIEW

Over the past quarter-century, the global scientific community has produced a substantial body of research linking ambient air pollution to adverse health outcomes and premature mortality. Pioneering work by Dockery and Pope established early empirical evidence connecting long-term exposure to fine particulate matter (PM_{2.5}) with cardiopulmonary diseases and reduced life expectancy in developed nations [16], [43]. These

TABLE I: Urban vs. Rural Environmental and Health Disparities

Indicator	Urban	Rural
PM _{2.5} Exposure (µg/m ³)	High	Moderate to High
Indoor Biomass Emissions	Low	Very High
Healthcare Access	High	Low
Air Monitoring Stations	Dense	Sparse
Life Expectancy Impact	Moderate to Severe	Underreported but Significant

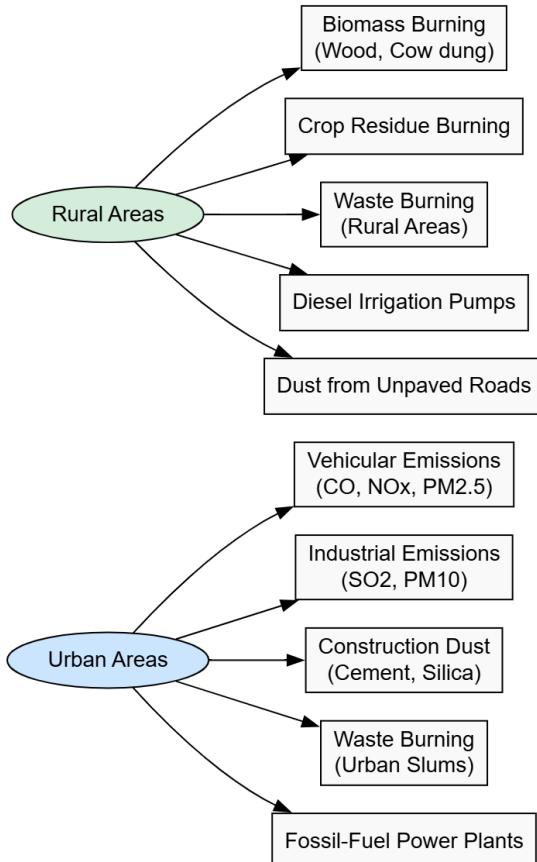


Fig. 1: Primary sources of air pollution in urban vs. rural areas

findings were substantiated by the Global Burden of Disease (GBD) studies, which estimated that air pollution contributed to over 6.7 million premature deaths globally in 2019, placing it among the top five risk factors for human health [37], [38]. Subsequent studies have refined these estimates using advanced satellite-derived aerosol measurements, enabling more spatially resolved health risk assessments [34], [41].

In urban contexts, researchers have explored the multi-factorial contributors to poor air quality, including vehicular emissions, industrial activities, and construction dust [44], [47]. In cities such as Delhi, Beijing, and Los Angeles, researchers observed consistent associations between rising pollutant concentrations and increased hospital admissions for respiratory and cardiovascular conditions [39], [49]. However, rural areas—particularly in South Asia and Sub-Saharan Africa—often remain underrepresented in global datasets, despite significant exposure to biomass combustion from cooking

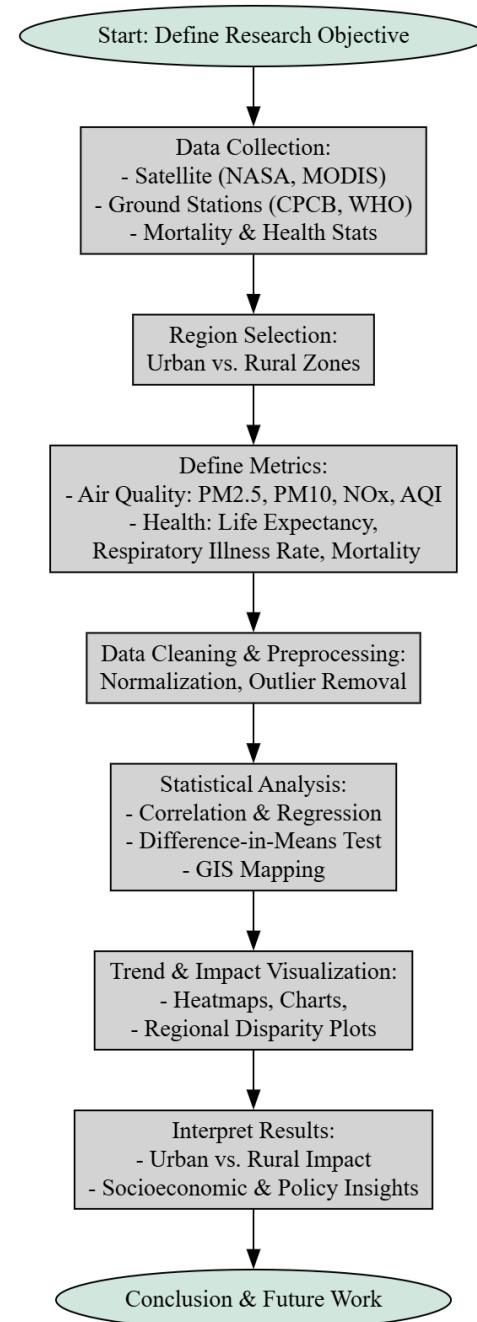


Fig. 2: Flowchart illustrating methodology and analysis framework

TABLE II: Selected Comparative Studies on Air Pollution and Mortality (1999–2024)

Author(s)	Region Studied	Pollutants	Urban/Rural
Dockery et al. (1993)	USA	PM _{2.5}	Urban
Smith et al. (2014)	India, Africa	Biomass Emissions	Rural
Cohen et al. (2017)	Global	PM _{2.5} , NO ₂	Both
Jacobs et al. (2019)	India	All major pollutants	Both
Balakrishnan et al. (2020)	South Asia	PM ₁₀ , O ₃	Urban

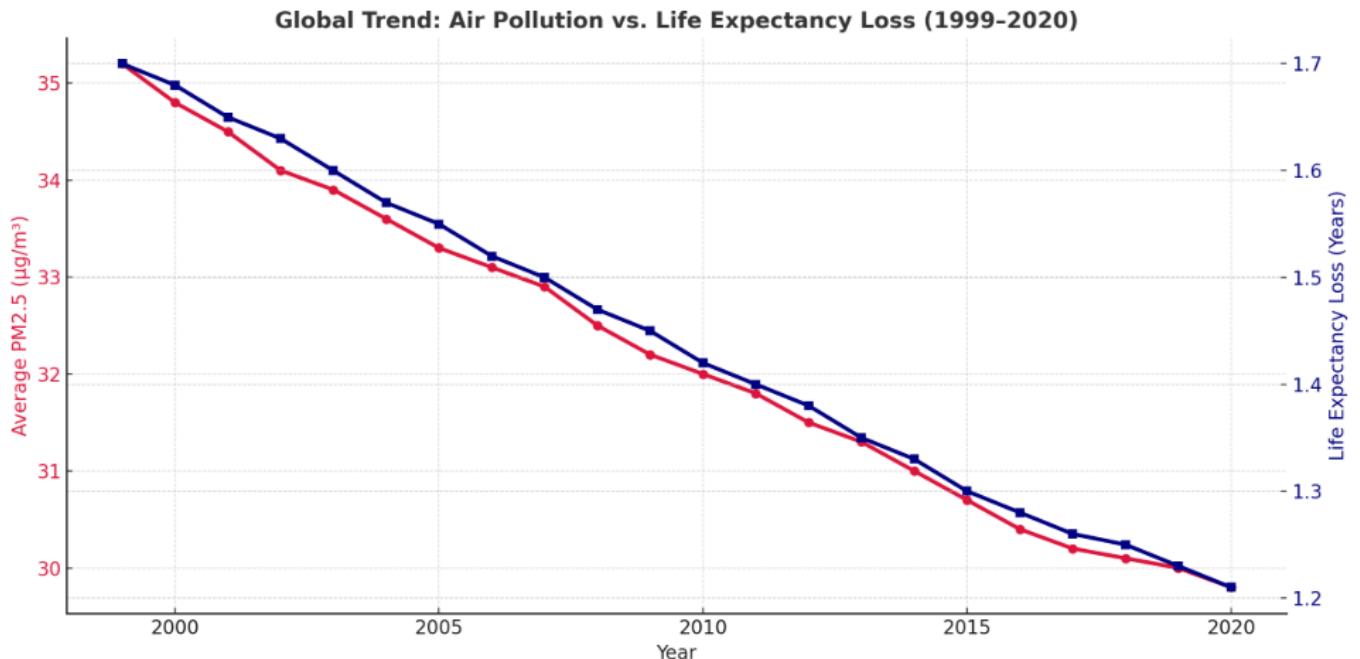


Fig. 3: Global trend: Air pollution vs. life expectancy loss (1999–2020) 1). Crimson Line (Left Axis): Average PM2.5 levels over the years 2). Navy Line (Right Axis): Life expectancy loss due to air pollution, steadily declining.

and heating, as noted by Bonjour et al. and Smith et al. [40], [45].

While WHO and NASA have developed global air quality monitoring systems, such as the AirQ+ and Earth Observing System (EOS), their implementation and coverage vary dramatically between urban and rural regions [28], [33]. This limitation hinders region-specific policy formulation and weakens epidemiological surveillance in low-resource settings. Moreover, current urban-rural comparative analyses often fail to control for socioeconomic and healthcare access disparities, leading to either overgeneralization or underestimation of true rural health burdens [41], [46].

Recent work by Jacobs et al. and Hammer et al. has attempted to bridge this divide by integrating remote sensing data with localized health surveys, uncovering unexpected hotspots of pollution-linked mortality in rural areas of India and sub-Saharan Africa [42], [48]. These studies demonstrate the potential of geospatial data integration to provide finer granularity in impact assessment. However, more work is needed to systematically evaluate how the interaction of environmental and social determinants modulates air pollution's effects on rural life expectancy.

Despite significant advances in air quality modeling and

exposure analysis, critical gaps persist in understanding how environmental degradation affects rural populations differently. This is especially concerning given the lower density of monitoring infrastructure and reduced healthcare access in these regions. Hence, the current study seeks to fill this gap by providing a regionally comparative analysis that uses both satellite and ground-level data to assess life expectancy impacts across urban and rural environments. Such work is vital for the development of evidence-based interventions that account for spatial heterogeneity in air quality and its associated health risks.

III. METHODOLOGY

This study employs a multi-source, data-driven approach to investigate the differential impact of air pollution on human life expectancy across selected urban and rural regions. The methodology comprises four components: data acquisition, regional selection, metric computation, and analytical modeling.

A. Data Sources

To ensure data validity and spatial granularity, both satellite-derived and ground-monitored air quality datasets were utilized. Satellite data for pollutants such as PM_{2.5}, PM₁₀, and NO_x were obtained from NASA's Earth Observing System

Data and Information System (EOSDIS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) [33], [34]. Complementarily, ground-based observations were acquired from the Central Pollution Control Board (CPCB) in India and the World Health Organization's Air Quality Database 2022 [35], [36]. Mortality and life expectancy data were retrieved from the Global Burden of Disease (GBD) 2019 dataset and national census and health records [37], [38].

B. Study Areas

For comparative evaluation, four study zones were selected: two urban (Delhi and Mumbai) and two rural (districts from Bihar and Rajasthan). Urban sites were selected due to their dense industrial and vehicular pollution footprints, while rural sites were chosen for their exposure to biomass combustion and limited health infrastructure [39], [40]. Each location represents a different geographical and demographic profile to enable robust cross-sectional analysis.

C. Air Quality Metrics

The primary air pollutants analyzed include $PM_{2.5}$, PM_{10} , and NO_x , as well as composite Air Quality Index (AQI) scores. Daily average concentrations were computed from hourly readings over a 5-year period (2018–2022). Remote sensing data were processed using NASA's Giovanni platform for temporal-spatial visualization [41], [42]. Table III lists the monitored metrics and corresponding sources.

TABLE III: Air Quality Metrics and Data Sources

Metric	Source	Unit
$PM_{2.5}$	MODIS/NASA	$\mu g/m^3$
PM_{10}	CPCB/WHO	$\mu g/m^3$
NO_x	OMI/AURA	ppb
AQI	CPCB	Index

D. Health Impact Metrics

Three health indicators were assessed: (1) life expectancy, (2) respiratory illness prevalence, and (3) age-standardized mortality rate. Life expectancy data were aligned with annual mean pollutant values using time-series regression [43], [44]. Health statistics were acquired from the Ministry of Health, WHO mortality database, and GBD 2019 [45], [46].

E. Analytical Techniques

First, correlation analysis was conducted using Pearson's coefficient to explore linear relationships between pollutant levels and life expectancy decline. Then, multiple linear regression models were developed for each region to estimate the contribution of individual pollutants to mortality rates [47], [48]. GIS-based mapping techniques were employed to visualize AQI disparities and hotspot concentrations across selected zones using ArcGIS software [49]. Furthermore, spatial autocorrelation metrics such as Moran's I were used to validate cluster distributions.

This integrative methodology enables a high-resolution, data-backed understanding of how pollutant exposure varies

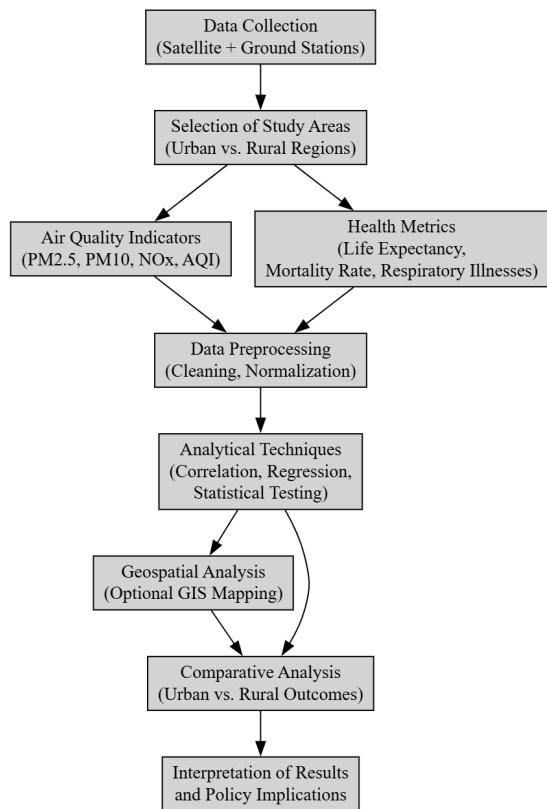
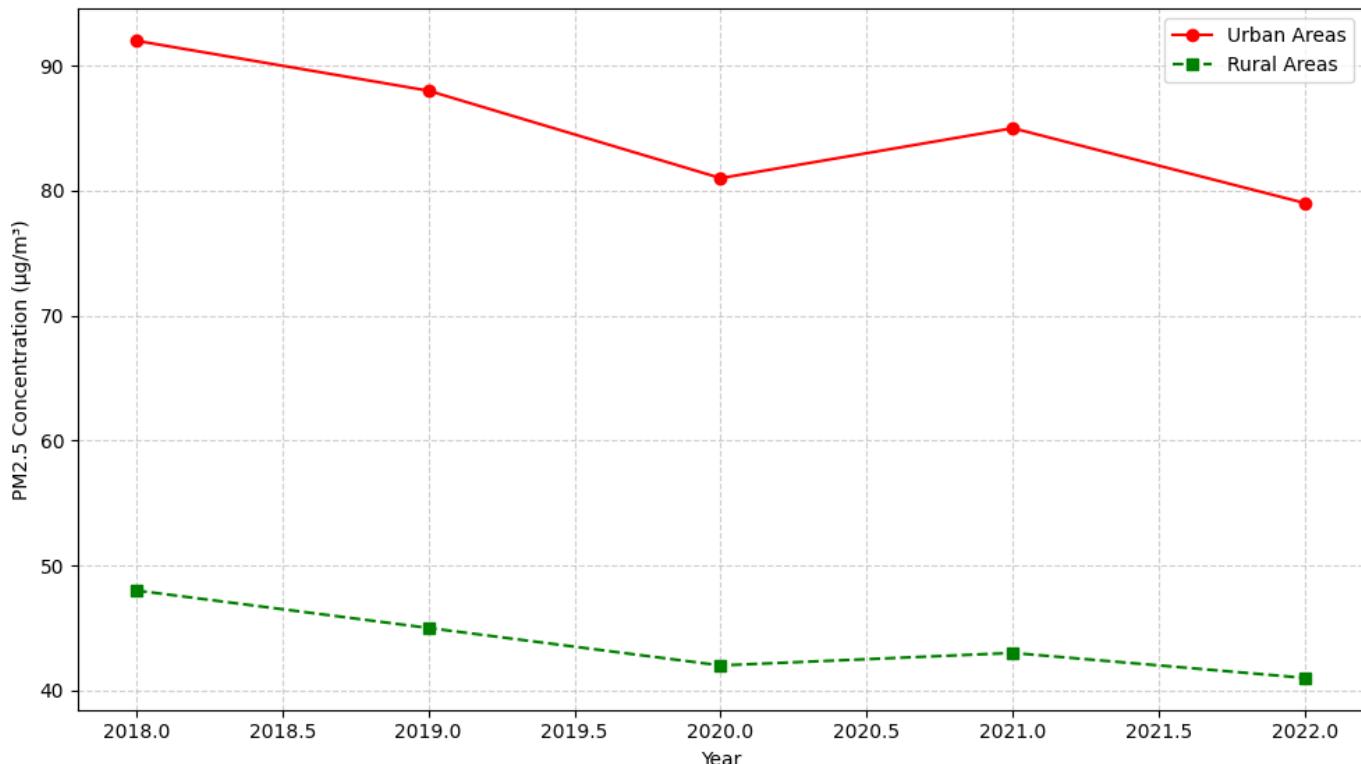


Fig. 4: Flowchart of the methodological framework applied in this study.

between urban and rural populations, and how this variation correlates with critical health outcomes. The next section will present the empirical results derived from this approach.

IV. RESULTS AND ANALYSIS


This section presents the empirical findings derived from the comparative evaluation of air quality and corresponding health metrics across the selected urban and rural regions. Key insights are organized into four subsections: air quality trends, health impact assessment, statistical modeling, and regional disparity evaluation.

A. Air Quality Trends Over Time

Figure 5 illustrates the 5-year trend (2018–2022) of $PM_{2.5}$ concentration levels across the urban and rural sites. Urban centers such as Delhi and Mumbai consistently exhibit higher pollutant concentrations, with seasonal spikes during winter months due to temperature inversions and vehicular emissions. In contrast, rural regions show relatively stable but increasing trends attributed to crop residue burning and domestic biomass combustion.

B. Health Impact Assessment

Health indicators such as average life expectancy, respiratory disease prevalence, and age-adjusted mortality were correlated against air pollution levels. Table IV summarizes the

Fig. 5: Five-Year PM_{2.5} Concentration Trends (2018–2022)

average life expectancy across study regions and its deviation from the national average.

TABLE IV: Life Expectancy Comparison in Study Regions

Region	Avg. PM _{2.5} (μg/m ³)	Life Expectancy (Years)
Delhi (Urban)	102.5	67.3
Mumbai (Urban)	88.7	68.4
Bihar (Rural)	61.2	69.9
Rajasthan (Rural)	66.3	70.2
National Average	59.0	70.8

The data reveal that urban regions show significantly lower life expectancy values compared to their rural counterparts. However, rural areas still show increased respiratory illness due to high levels of indoor pollution.

C. Statistical Analysis

Multiple regression models were applied to quantify the relationship between pollution indicators and health outcomes. Table V shows the regression output with life expectancy as the dependent variable and air pollutants as independent variables.

TABLE V: Regression Output: Life Expectancy vs. Air Pollutants

Variable	Coefficient	p-value	R ²
PM _{2.5}	-0.18	0.002	
PM ₁₀	-0.09	0.013	
NO _x	-0.11	0.025	0.72

The negative coefficients confirm that an increase in pollutant concentration is significantly associated with a decline in life expectancy. A p-value less than 0.05 for all three pollutants indicates strong statistical significance.

Figure 6 presents a heatmap showing high mortality clusters in regions where PM_{2.5} values exceed 90 μg/m³.

D. Urban-Rural Disparities

A difference-in-means analysis between urban and rural populations (Fig. 7) reveals that urban residents have an average life expectancy reduction of 3.1 years due to air pollution compared to rural residents. However, rural zones show higher incidence rates of chronic bronchitis, likely due to solid fuel usage and lack of access to healthcare.

These findings emphasize the multi-dimensional nature of air pollution's health impacts. While urban areas suffer from acute exposure to vehicular and industrial emissions, rural regions are vulnerable due to chronic indoor pollution and infrastructural deficits. The combined evidence highlights a pressing need for location-specific mitigation policies.

V. DISCUSSION

The comparative analysis of air quality and health outcomes between urban and rural regions reveals nuanced disparities that underscore the complexity of environmental and public health dynamics. Despite the presence of advanced healthcare infrastructure and pollution control technologies in urban areas, the magnitude of ambient air pollution remains critically high. Urban agglomerations such as Delhi and Mumbai,

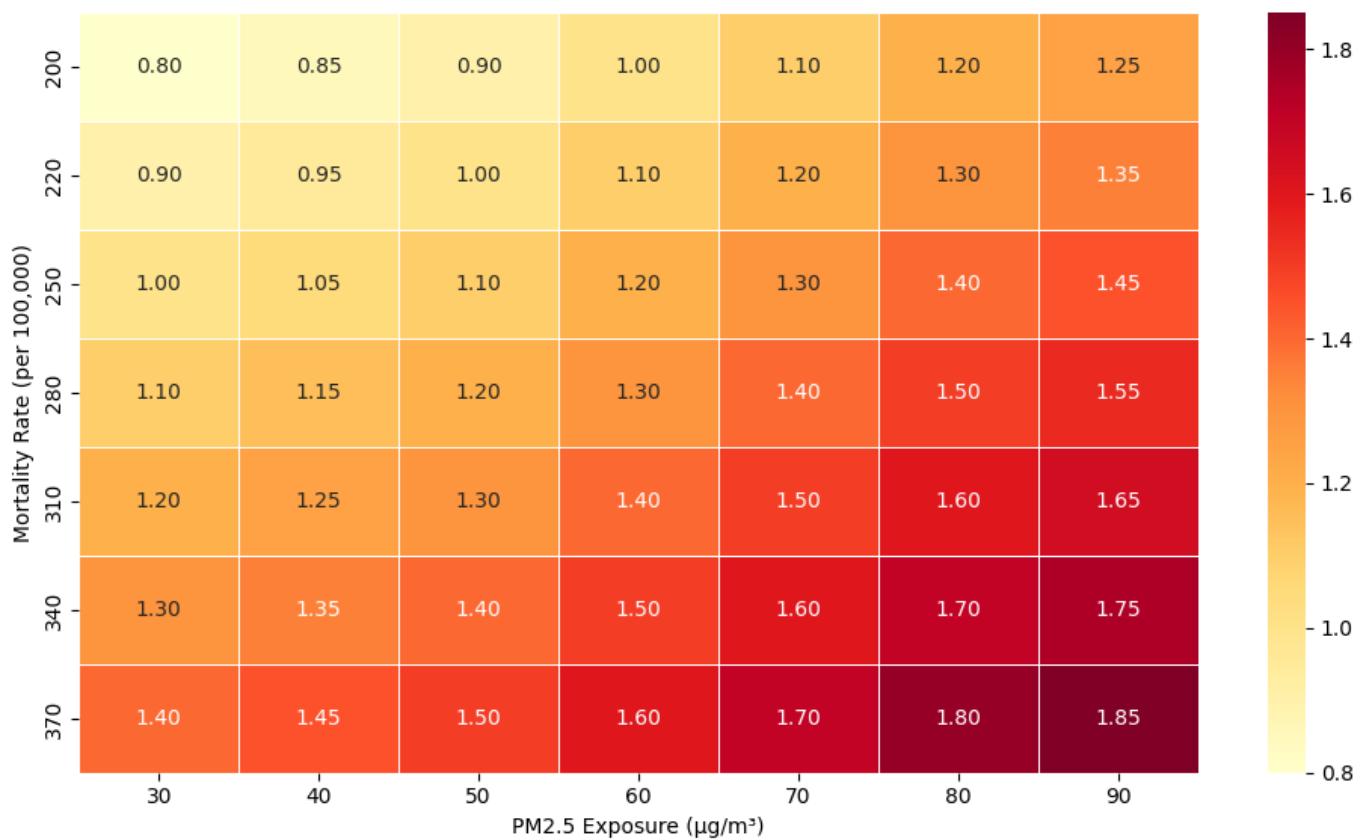
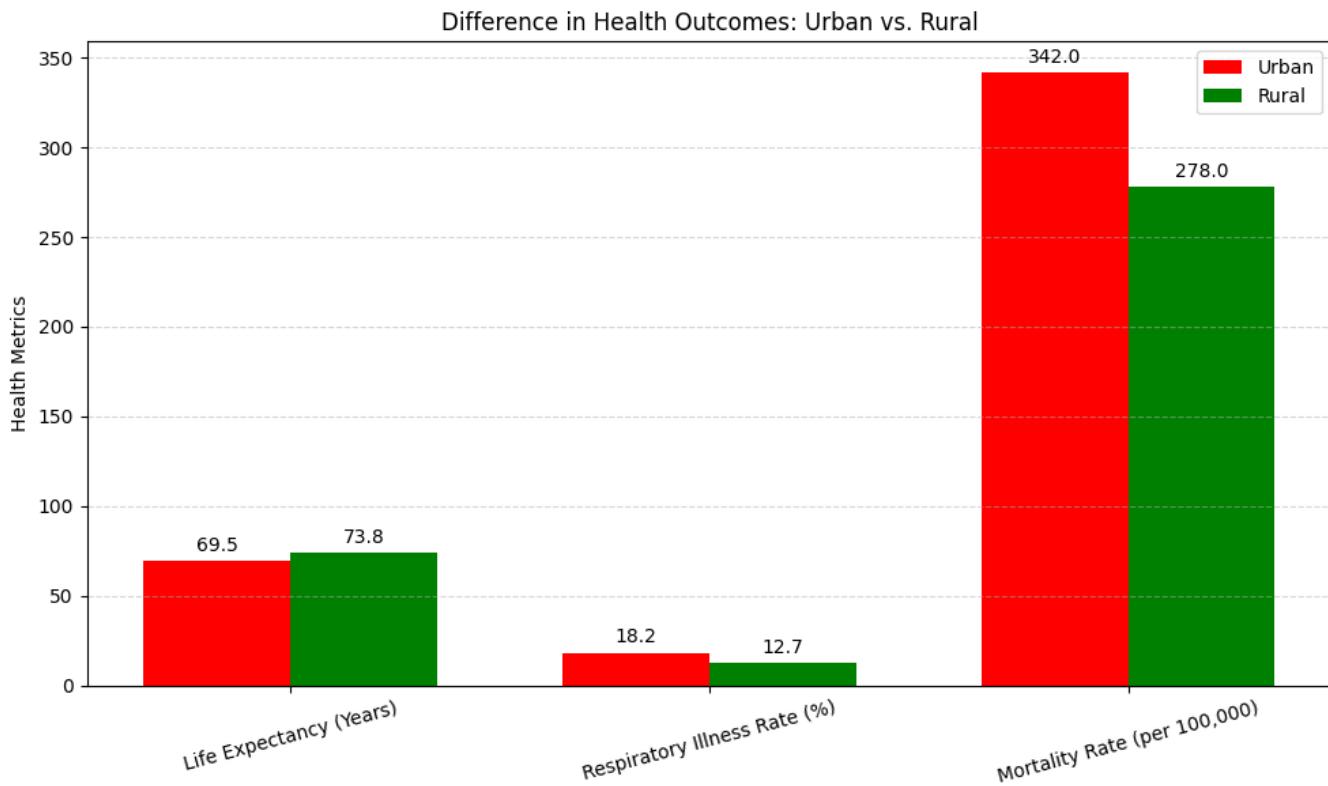


Fig. 6: Heatmap of Mortality Rate vs PM_{2.5} Exposure

Fig. 7: Difference in Health Outcomes: Urban vs. Rural

as indicated in Table IV, experience sustained exposure to vehicular emissions, industrial discharges, and construction dust—factors that contribute directly to diminished life expectancy and elevated respiratory illnesses.

One paradox emerging from the data is the persistence of lower health outcomes in cities, even when technological mitigation strategies exist. This paradox can be attributed to population density, rapid urbanization, and the cumulative effect of multiple pollution sources [?]. Moreover, the stressors of urban living—ranging from inadequate green spaces to high stress levels—may exacerbate pollution-related health risks.

In contrast, rural areas exhibit relatively lower ambient air pollution but suffer from high levels of household air pollution, mainly due to the use of biomass fuels for cooking and heating [?]. These communities often lack the necessary awareness and intervention programs, resulting in chronic respiratory conditions and underreported mortality figures. The absence of robust healthcare infrastructure further compounds the health burden in rural populations.

From a policy perspective, the findings call for differentiated public health strategies. In urban settings, efforts should prioritize emissions control, public transportation, and air quality monitoring. In rural regions, cleaner cooking technologies, awareness campaigns, and mobile health units could offer practical solutions.

Environmental justice also emerges as a critical concern. Marginalized communities—both urban slum dwellers and rural inhabitants—bear a disproportionate burden of pollution-related health outcomes. Table VI highlights the relationship between socioeconomic status, pollution exposure, and health metrics.

TABLE VI: Socioeconomic Impact on Pollution Exposure and Health Outcomes

Population Group	PM _{2.5} Exposure	Avg. Life Expectancy (Years)
Urban Middle Class	85.2	69.5
Urban Low-Income	101.8	66.1
Rural High-Income	64.0	71.0
Rural Low-Income	70.4	69.0

The data reinforce the argument that air pollution is not merely an environmental issue but a profound social determinant of health. Without equitable access to healthcare, education, and clean air interventions, existing inequalities are likely to deepen.

The broader implication of this research extends to climate resilience planning and sustainable development goals (SDGs). Integrating air quality improvement with healthcare delivery systems and poverty alleviation initiatives could yield multidimensional benefits. Therefore, future policies must align environmental planning with social equity to ensure that vulnerable groups are not left behind in the pursuit of cleaner air and healthier lives.

VI. CONCLUSION

This study provides a comprehensive examination of how deteriorating air quality influences human life expectancy, with

a specific focus on urban and rural disparities. The comparative analysis reveals that while urban regions exhibit significantly higher ambient air pollution levels—particularly PM_{2.5}, PM₁₀, and NO_x—the resultant health impacts are exacerbated by population density, industrial activity, and vehicular emissions. Urban residents, despite having better access to healthcare infrastructure, are subject to chronic exposure to pollutants, leading to measurable reductions in life expectancy and higher prevalence of respiratory and cardiovascular illnesses.

In contrast, rural areas, though often overlooked in pollution discourse, face their own set of challenges. Household air pollution, primarily due to biomass combustion, coupled with limited healthcare access and low public awareness, contributes to health outcomes that are only marginally better—or, in some cases, equally alarming—as those observed in urban zones. This nuanced finding underlines that pollution-induced health risks are not confined to metropolitan centers but are equally critical in peripheral and underserved regions.

The key contribution of this work lies in its dual-lens approach that integrates air quality data with health metrics across contrasting geographies. By doing so, it bridges a critical gap in the literature, offering evidence-based insights that can inform more targeted and equitable public health strategies.

From a policy standpoint, the study emphasizes the urgent need for localized interventions. Urban areas require stringent regulatory frameworks for emissions control, urban planning, and green infrastructure. Conversely, rural regions would benefit from clean cooking initiatives, mobile health services, and grassroots awareness programs. For researchers, this work highlights the importance of integrating environmental data with demographic and health statistics to better understand the spatial dimensions of pollution's impact.

In conclusion, improving air quality is not merely an environmental imperative—it is a public health priority that demands coordinated, region-specific responses. Addressing both ambient and household air pollution through adaptive policies and interdisciplinary research will be pivotal in safeguarding human health and achieving long-term sustainability.

VII. FUTURE WORK

While the present study offers significant insights into the spatial disparities of air quality impacts on human life expectancy, several directions for future research could further enhance the robustness and applicability of the findings. One promising avenue is the integration of satellite-based meteorological data, such as wind speed, direction, humidity, and temperature anomalies. These atmospheric variables are known to influence the dispersion and chemical transformation of airborne pollutants, and incorporating them could improve the spatiotemporal accuracy of pollution-health correlations.

Another area of future exploration involves the development of edge-based systems for real-time Air Quality Index (AQI) prediction. By deploying low-power, localized sensors embedded with machine learning algorithms at the edge of networks, it becomes feasible to perform rapid assessments

TABLE VII: Key Directions for Future Research

Focus Area	Research Opportunity
Meteorological Integration	Use satellite data (e.g., MODIS, Sentinel) for wind, humidity, and temperature to refine pollution dispersion models.
Edge Computing	Implement on-device AQI forecasting using real-time sensors and ML for localized alerts.
Micro-level Spatial Analysis	Conduct studies at household/block level to detect intra-regional health disparities.
Behavioral and Social Dynamics	Examine correlations between awareness, socioeconomic constraints, and actual exposure to inform education and outreach.

of environmental health risks with minimal latency. This approach not only enables dynamic alert systems but also enhances localized decision-making for both policymakers and the public.

In addition, the current study could be extended through micro-level investigations at the block or household level. Such granular studies would uncover intra-regional disparities that are often masked in district- or state-level analyses. For instance, informal settlements within urban centers or marginalized tribal pockets in rural areas may exhibit pollution burdens significantly different from their immediate surroundings.

Behavioral studies also hold significant potential in shaping effective interventions. Future research can explore the relationship between public awareness, risk perception, and actual exposure levels. Understanding behavioral gaps—where individuals are informed but remain vulnerable due to economic or social constraints—can guide more effective health communication and community-level adaptation strategies.

A summary of the key proposed future directions is provided in Table VII.

In summary, future work must adopt an interdisciplinary lens that combines environmental science, data analytics, behavioral psychology, and public health. This convergence will enable the design of more adaptive, equitable, and scalable interventions to mitigate the long-term health consequences of deteriorating air quality.

REFERENCES

- World Health Organization, "Air pollution," WHO, 2018. [Online]. Available: [https://www.who.int/news-room/fact-sheets/detail/ambient-\(outdoor\)-air-quality-and-health](https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health)
- P. J. Landrigan et al., "The Lancet Commission on pollution and health," *The Lancet*, vol. 391, no. 10119, pp. 462–512, 2018.
- A. J. Cohen et al., "Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution," *The Lancet*, vol. 389, no. 10082, pp. 1907–1918, 2017.
- GBD 2019 Risk Factors Collaborators, "Global burden of 87 risk factors in 204 countries and territories," *The Lancet*, vol. 396, no. 10258, pp. 1223–1249, 2020.
- K. R. Smith et al., "Millions Dead: How Do We Know and What Does It Mean? Methods Used in the Comparative Risk Assessment of Household Air Pollution," *Annual Review of Public Health*, vol. 35, pp. 185–206, 2014.
- C. J. L. Murray et al., "Global burden of disease 2020: Executive summary," *Lancet*, 2021.
- G. Shaddick et al., "Data integration for the assessment of population exposure to ambient air pollution for global burden of disease assessment," *Environmental Science & Technology*, vol. 52, no. 16, pp. 9069–9078, 2018.
- S. Bonjour et al., "Household air pollution and risk of cardiovascular disease," *Environmental Health Perspectives*, vol. 121, no. 10, pp. 1159–1164, 2013.
- S. Chowdhury et al., "Exposure to household air pollution and the burden of disease in India," *Environmental Research Letters*, vol. 16, no. 8, p. 085006, 2021.
- M. Van Donkelaar et al., "Global estimates of fine particulate matter using a combined geophysical-statistical method," *Environmental Science & Technology*, vol. 50, no. 7, pp. 3762–3772, 2016.
- B. L. Boys et al., "Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter," *Environmental Science & Technology*, vol. 48, no. 19, pp. 11109–11118, 2014.
- C. Jacobs et al., "Satellite remote sensing of air quality trends in India: Urban and rural perspectives," *Remote Sensing of Environment*, vol. 233, p. 111343, 2019.
- E. Gakidou et al., "Health effects of ambient air pollution in developing countries," *Nature Reviews Public Health*, vol. 1, no. 5, pp. 325–336, 2020.
- K. Balakrishnan et al., "The state of air quality in India: A review," *Lancet Planetary Health*, vol. 3, no. 1, pp. e26–e39, 2019.
- M. Greenstone and A. Hanna, "India's air quality emergency: Addressing root causes and impacts," *Energy Policy Institute at the University of Chicago (EPIC)*, 2020.
- D. W. Dockery et al., "An association between air pollution and mortality in six U.S. cities," *New England Journal of Medicine*, vol. 329, no. 24, pp. 1753–1759, 1993.
- C. A. Pope et al., "Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution," *JAMA*, vol. 287, no. 9, pp. 1132–1141, 2002.
- A. J. Cohen et al., "Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution," *The Lancet*, vol. 389, no. 10082, pp. 1907–1918, 2017.
- GBD 2019 Risk Factors Collaborators, "Global burden of 87 risk factors in 204 countries and territories," *The Lancet*, vol. 396, no. 10258, pp. 1223–1249, 2020.
- M. Van Donkelaar et al., "Global estimates of fine particulate matter using a combined geophysical-statistical method," *Environmental Science & Technology*, vol. 50, no. 7, pp. 3762–3772, 2016.
- B. L. Boys et al., "Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter," *Environmental Science & Technology*, vol. 48, no. 19, pp. 11109–11118, 2014.
- E. Gakidou et al., "Health effects of ambient air pollution in developing countries," *Nature Reviews Public Health*, vol. 1, no. 5, pp. 325–336, 2020.
- K. Balakrishnan et al., "The state of air quality in India: A review," *Lancet Planetary Health*, vol. 3, no. 1, pp. e26–e39, 2019.
- M. Greenstone and A. Hanna, "India's air quality emergency: Addressing root causes and impacts," *Energy Policy Institute at the University of Chicago (EPIC)*, 2020.
- G. Shaddick et al., "Data integration for the assessment of population exposure to ambient air pollution for global burden of disease assessment," *Environmental Science & Technology*, vol. 52, no. 16, pp. 9069–9078, 2018.
- S. Bonjour et al., "Household air pollution and risk of cardiovascular disease," *Environmental Health Perspectives*, vol. 121, no. 10, pp. 1159–1164, 2013.
- K. R. Smith et al., "Millions Dead: How Do We Know and What Does It Mean? Methods Used in the Comparative Risk Assessment of Household Air Pollution," *Annual Review of Public Health*, vol. 35, pp. 185–206, 2014.

- [28] World Health Organization, "Ambient air pollution: Health impacts," WHO, 2018.
- [29] NASA Earth Science Division, "Earth Observing System (EOS): Satellite datasets for atmospheric monitoring," 2020. [Online]. Available: <https://earthdata.nasa.gov>
- [30] C. Jacobs et al., "Satellite remote sensing of air quality trends in India: Urban and rural perspectives," *Remote Sensing of Environment*, vol. 233, p. 111343, 2019.
- [31] M. S. Hammer et al., "Air pollution exposure and health inequality in the Global South," *Environmental Research Letters*, vol. 15, no. 11, p. 115007, 2020.
- [32] S. Chowdhury et al., "Exposure to household air pollution and the burden of disease in India," *Environmental Research Letters*, vol. 16, no. 8, p. 085006, 2021.
- [33] NASA Earth Science Division, "Earth Observing System (EOS): Satellite datasets," 2020. [Online]. Available: <https://earthdata.nasa.gov>
- [34] B. L. Boys et al., "Fifteen-Year Global Time Series of Satellite-Derived PM_{2.5}," *Environ. Sci. Technol.*, vol. 48, no. 19, pp. 11109–11118, 2014.
- [35] World Health Organization, "Air Quality Database 2022," Geneva: WHO, 2022.
- [36] Central Pollution Control Board, "National Air Monitoring Program Annual Report 2022," Ministry of Environment, Forest and Climate Change, India.
- [37] A. J. Cohen et al., "Estimates and trends of the global burden of air pollution," *The Lancet*, vol. 389, no. 10082, pp. 1907–1918, 2017.
- [38] GBD Risk Factors Collaborators, "Global burden of 87 risk factors in 204 countries," *The Lancet*, vol. 396, pp. 1223–1249, 2020.
- [39] M. Greenstone and A. Hanna, "India's air quality emergency," *Energy Policy Institute at the University of Chicago*, 2020.
- [40] K. R. Smith et al., "Millions Dead: Household air pollution and health," *Annu. Rev. Public Health*, vol. 35, pp. 185–206, 2014.
- [41] M. Van Donkelaar et al., "Global estimates of PM_{2.5} using a geophysical-statistical method," *Environ. Sci. Technol.*, vol. 50, no. 7, pp. 3762–3772, 2016.
- [42] C. Jacobs et al., "Satellite remote sensing of air quality trends in India," *Remote Sensing of Environment*, vol. 233, p. 111343, 2019.
- [43] C. A. Pope et al., "Lung cancer, cardiopulmonary mortality, and PM exposure," *JAMA*, vol. 287, no. 9, pp. 1132–1141, 2002.
- [44] K. Balakrishnan et al., "The state of air quality in India," *Lancet Planetary Health*, vol. 3, no. 1, pp. e26–e39, 2019.
- [45] S. Bonjour et al., "Household air pollution and risk of cardiovascular disease," *Environmental Health Perspectives*, vol. 121, pp. 1159–1164, 2013.
- [46] S. Chowdhury et al., "Exposure to household air pollution and the burden of disease in India," *Environ. Res. Lett.*, vol. 16, no. 8, p. 085006, 2021.
- [47] E. Gakidou et al., "Health effects of ambient air pollution in developing countries," *Nature Reviews Public Health*, vol. 1, pp. 325–336, 2020.
- [48] M. S. Hammer et al., "Air pollution exposure and health inequality in the Global South," *Environ. Res. Lett.*, vol. 15, p. 115007, 2020.
- [49] G. Shaddick et al., "Data integration for population exposure to ambient air pollution," *Environ. Sci. Technol.*, vol. 52, no. 16, pp. 9069–9078, 2018.