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Abstract—The rapid deployment of smart intersections and
Vehicle-to-Everything (V2X) communication has significantly
enhanced traffic safety and situational awareness; however,
these systems remain highly vulnerable to visual and sensor-
based spoofing attacks. Malicious entities can exploit deepfake
technologies or inject falsified sensor data to mislead intelligent
surveillance networks, resulting in compromised decision-making
and potential road safety hazards. To address this emerging
challenge, this paper introduces SecureVision, a multimodal anti-
spoofing and deepfake detection framework that integrates the
strengths of MobileNet and ResNeXt architectures. The proposed
system fuses spatial, temporal, and contextual features from
camera feeds and V2X signals to authenticate real-world inputs
in real time. By combining MobileNet’s efficiency in lightweight
visual processing with ResNeXt’s capability for rich feature
aggregation, SecureVision achieves both computational scalability
and high detection precision. Extensive experiments conducted
on benchmark deepfake and simulated V2X spoofing datasets
demonstrate that SecureVision attains an overall detection accu-
racy of 98.3%, with an average inference latency of 42ms per
frame, making it suitable for edge-based deployment in intelligent
traffic environments. The results confirm that multimodal fusion
substantially enhances robustness against adversarial manipu-
lations compared to unimodal systems. Overall, this research
establishes a secure, adaptive, and real-time framework for
safeguarding smart intersection infrastructure against deepfake
and sensor spoofing threats, paving the way for trustworthy Al-
driven surveillance in next-generation urban mobility ecosystems.

Keywords—Deepfake Detection, Anti-Spoofing, Multimodal
Fusion, MobileNet, ResNeXt, V2X Security, Intelligent Trans-
portation Systems, Smart Intersections

I. INTRODUCTION

The integration of Artificial Intelligence (AI) with trans-
portation infrastructure has revolutionized the management of
smart cities, particularly through intelligent surveillance and
Vehicle-to-Everything (V2X) communication systems. How-
ever, as these technologies evolve, so do the methods of
exploitation that threaten their reliability. Modern urban inter-
sections rely on continuous data exchange between cameras,
sensors, and connected vehicles to ensure safety and efficiency.
This reliance has exposed critical vulnerabilities, particularly
through visual and sensor-based spoofing attacks, which can
inject falsified data or manipulated imagery into decision-
making pipelines [1]-[3]. Deepfake technology, once confined
to social media misuse, now presents tangible risks to physical
infrastructure by generating synthetic visual content capable of
deceiving surveillance systems [4], [S]-[7]. Similarly, spoofed

V2X messages can fabricate vehicle positions or intentions,
leading to severe consequences such as false traffic alerts,
signal manipulation, or collision risks [8], [9]-[11].

In the context of smart intersections, the fusion of vi-
sual perception with vehicular communication is essential for
adaptive traffic control and autonomous navigation. However,
most existing detection systems remain limited to single-modal
analysis—either focusing on image-based deepfake detection
or network-level spoofing defense. These unimodal approaches
suffer from limited generalization, high latency under real-time
conditions, and an inability to detect coordinated cross-domain
attacks [12], [13], [15], [16]. Furthermore, the computational
demands of deep neural networks hinder deployment on edge-
based surveillance devices, restricting scalability in resource-
constrained environments [14]. The absence of an integrated
framework capable of simultaneously verifying authenticity
across both visual and sensor streams remains a major gap
in current smart city security architectures.

To address these challenges, this paper presents Secure-
Vision, a novel hybrid deep learning framework designed
to counter multimodal spoofing and deepfake threats within
intelligent intersection ecosystems. SecureVision leverages the
complementary strengths of MobileNet and ResNeXt architec-
tures to perform lightweight, high-accuracy detection across
visual and V2X modalities. The MobileNet branch captures
spatial and temporal inconsistencies in visual data, while the
ResNeXt branch extracts high-dimensional sensor representa-
tions, enabling robust multimodal feature fusion [17]. This
integration ensures low inference latency without compro-
mising accuracy, making the model suitable for real-time
edge deployment [18]-[20]. By coupling multimodal learning
with optimized inference techniques, SecureVision enhances
resilience against adversarial manipulation and sensor-level
spoofing in interconnected transport networks.

The major contributions of this research are summarized
in Table I. These contributions outline the technical novelty,
operational efficiency, and security relevance of the proposed
framework. SecureVision has been experimentally validated
through intersection-level simulations and real-world case
studies involving multimodal datasets. The results demonstrate
significant improvements in detection accuracy, latency reduc-
tion, and model interpretability compared to existing state-of-
the-art systems.
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TABLE I: Major Contributions of SecureVision Framework

No. Contribution Area Description

1 Hybrid CNN Fusion Integration of MobileNet and ResNeXt for efficient multimodal feature learning.

2 Cross-Modal Security Simultaneous authentication of visual and V2X streams for spoofing detection.

3 Real-Time Processing Low-latency inference optimized for edge-based intelligent surveillance devices.

4 Robustness Enhanced resistance against deepfake and adversarial attacks in heterogeneous data
environments.

5 Empirical Validation Experimental testing on multimodal datasets and intersection-level use cases.

The, SecureVision establishes a unified and computationally
efficient multimodal verification mechanism that bridges the
gap between deepfake detection and sensor-level spoofing
prevention. Its design supports the vision of secure, adaptive,
and intelligent traffic management systems, paving the way
for trustworthy Al-driven decision-making in next-generation
urban mobility environments.

II. RELATED WORK

The growing sophistication of artificial intelligence in visual
media generation and vehicular communication has intensified
research interest in secure perception systems. This section
reviews key advances in deepfake detection, anti-spoofing
mechanisms, and multimodal sensor fusion approaches that lay
the foundation for the proposed SecureVision framework. The
discussion is divided into four focused subsections, followed
by a summary of existing gaps and challenges.

A. Deepfake Detection in Vision Systems

Recent developments in computer vision have produced a
broad spectrum of techniques to identify manipulated visual
content. Early approaches relied on inconsistencies in pixel-
level statistics and hand-crafted features, such as illumination
or head pose variations [31]. However, with the advent of
deep learning, Convolutional Neural Networks (CNNs) and
transformer-based architectures have become dominant tools
for deepfake detection. Works such as MesoNet and Xception-
Net demonstrated high accuracy by learning hierarchical visual
artifacts from synthetic videos [32], [35]. Similarly, attention-
based transformers like ViT and Swin-Transformer have been
explored for capturing long-range temporal dependencies and
subtle facial distortions [36], [23], [24], [39].

In addition to single-frame detection, temporal analysis
has proven effective in identifying inconsistencies across se-
quential frames. Guera and Delp proposed a recurrent neural
network-based approach to capture motion irregularities in
deepfake videos [28]-[30], [40]. More recently, ensemble
learning and feature-level fusion have improved model ro-
bustness across datasets [43]. Despite these advancements,
deepfake detectors often face challenges in generalization due
to the diversity of manipulation methods and compression
artifacts. Moreover, most visual-only systems are susceptible
to cross-modal spoofing, where synthetic imagery is reinforced
with legitimate sensor signals, underscoring the need for
multimodal defense mechanisms.

B. Anti-Spoofing in Autonomous and Smart Surveillance

As intelligent transportation and surveillance systems ex-
pand, the reliability of sensor inputs has become a security-
critical concern. Presentation attack detection (PAD) tech-
niques have evolved from texture-based approaches to ad-
vanced CNN-driven frameworks capable of identifying replay
and mask attacks [33], [34], [37], [44]. In face recognition
systems, auxiliary cues such as depth maps, reflectance, and
micro-motion have been exploited for liveness verification
[47], [48]. In the vehicular context, spoofing can target not
only cameras but also radar and LiDAR sensors, creating false
objects or obstructing genuine signals [38], [41], [49].

To mitigate these risks, researchers have proposed multi-
sensor verification frameworks. For example, sensor signal
authentication using timing consistency and cryptographic
hashing has shown potential in verifying V2X messages [42],
[45], [52]. Deep learning-based PAD solutions employing
multi-stream CNNs and optical flow analysis have also been
introduced to distinguish between authentic and spoofed en-
vironmental inputs [53]. Despite these developments, many
existing systems are computationally intensive, limiting their
feasibility for real-time edge deployment. Furthermore, sensor-
specific detection methods fail to generalize across hetero-
geneous modalities, emphasizing the demand for unified,
lightweight, and adaptive frameworks such as SecureVision.

C. Multimodal Fusion and V2X Sensor Integrity

Multimodal data fusion has emerged as a promising ap-
proach to enhance robustness in perception systems by com-
bining complementary information from diverse sources. Early
fusion strategies relied on concatenating feature maps or
decision-level aggregation [46], [50], [54], whereas more
recent methods utilize attention mechanisms and graph-based
representations to optimize feature interactions [57]. In the
domain of autonomous driving, multimodal fusion of camera,
LiDAR, and radar data has been widely studied to improve
object detection accuracy and environmental awareness [58],
[51], [55], [59]. However, limited work has addressed fusion
for security validation or spoofing detection in V2X-enabled
environments.

To ensure data authenticity, several studies have focused on
sensor integrity verification. Blockchain-assisted V2X com-
munication frameworks have been proposed to preserve data
traceability and reduce message tampering [62]. Others have
employed deep learning models to assess sensor trustworthi-
ness by detecting anomalies in spatio-temporal correlations
[56], [60], [61], [63]. Although these approaches demonstrate
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Fig. 1: Generalized flow of CNN and transformer-based deepfake detection pipelines.

theoretical promise, their reliance on heavy computation or
centralized verification limits their real-time applicability. The
SecureVision framework bridges this gap by leveraging Mo-
bileNet—ResNeXt fusion for efficient and trustworthy multi-
modal spoof detection directly at the edge.

D. Research Gaps and Challenges

Despite the rapid progress in deepfake detection and spoof-
ing prevention, several unresolved challenges persist that mo-
tivate the development of SecureVision. First, most detection
systems remain modality-restricted, analyzing either visual or
sensor data independently, which leaves them vulnerable to co-
ordinated multimodal attacks [64]. Second, model scalability
and real-time performance remain major barriers for deploy-
ment in smart intersections, where latency directly impacts
traffic safety [65]. Third, robustness against adaptive adver-
sarial attacks and unseen spoofing patterns remains limited
due to overfitting in data-driven models [66]. Lastly, existing
frameworks often neglect the importance of explainability and
interpretability, crucial for establishing trust in Al-driven urban
infrastructures [67].

In response, SecureVision introduces a multimodal fusion
paradigm that combines efficiency and interpretability. By
integrating MobileNet and ResNeXt within a unified feature
fusion architecture, the framework achieves strong general-
ization, low latency, and adaptability to diverse intersection
scenarios. These characteristics collectively advance the state
of the art in trustworthy Al for smart city surveillance.

III. SYSTEM ARCHITECTURE AND DESIGN

The proposed SecureVision framework is designed as a
modular, multimodal deep learning system that integrates
camera-based vision analytics and vehicular sensor telemetry
for real-time anti-spoofing and deepfake detection at smart
intersections. The architecture follows a pipeline-based design
that ensures parallel data ingestion, adaptive feature extraction,
and synchronized multimodal fusion, allowing the system

to achieve high detection accuracy with minimal latency.
Fig. 2 provides an overview of the SecureVision architecture,
illustrating its key modules and information flow.

A. Overall Architecture of SecureVision

The SecureVision architecture comprises six major compo-
nents: (1) the visual processing module, (2) the sensor acquisi-
tion module, (3) the MobileNet-based feature extractor, (4) the
ResNeXt-based contextual extractor, (5) the multimodal fusion
unit, and (6) the decision and classification layer. The camera
stream processes facial, vehicular, and environmental frames,
while the V2X sensor stream receives real-time telemetry
such as GPS, LiDAR, and vehicular broadcast messages.
Each modality undergoes independent preprocessing before
features are extracted and fused. This hybrid design balances
computational efficiency and detection robustness, crucial for
edge-based deployment in intelligent intersections [68], [69].

B. Data Acquisition and Preprocessing

The dataset utilized in this research integrates both visual
and sensor data streams. Camera inputs were derived from
deepfake detection datasets such as FaceForensics++ and
DFDC, whereas the V2X telemetry data was simulated using
vehicular communication testbeds [70]. The visual preprocess-
ing involved normalization, frame extraction, and augmenta-
tion operations, including random rotation and illumination
correction, ensuring robustness against environmental noise.
Sensor data preprocessing consisted of packet validation,
timestamp alignment, and outlier removal to ensure consis-
tency with visual input [71]. The synchronized data streams
formed the foundation for multimodal feature extraction.

C. MobileNet-Based Lightweight Visual Feature Extraction

MobileNet was chosen for the visual stream due to its
depthwise separable convolutions that minimize computational
overhead while maintaining representational richness [72]. The
model was fine-tuned on facial and environmental frames to

@ nttps://jsiar.com
¥ editor@isiar.com

© 2025 JSIAR



Journal of Scientific Innovation and Advanced Research (JSIAR) 2025

TABLE II: Comparison of Representative Multimodal Security Frameworks

Framework Modality Used Latency Primary Limitation

(ms)
DeepFusion [58] Camera + LiDAR 120 High computational cost
SecureV2X [62] GPS + V2X 95 Requires blockchain consensus
TrustNet [63] Sensor Graph Model 105 Centralized anomaly detection
SecureVision (Proposed) | Camera + V2X 42 None (optimized for edge)

TABLE III: Modular Overview of SecureVision System Components

Module

Input Source

Output/Role

Visual Pipeline

Camera Feed

Deepfake and Face Spoof Detection

Sensor Pipeline

V2X Telemetry

Message Integrity Verification

Feature Extractor 1

MobileNet

Lightweight Spatial Encoding

Feature Extractor 2

ResNeXt

Contextual Feature Aggregation

Fusion Layer

Combined Modalities

Joint Representation Vector

Decision Layer Fused Features

Genuine/Spoofed Classification

capture subtle spoofing cues such as texture inconsistency,
unnatural blinking, and motion irregularities. The lightweight
design allows real-time deployment on embedded edge devices
without compromising detection performance. This visual en-
coder outputs a 128-dimensional feature vector representing
the frame’s authenticity likelihood.

D. ResNeXt-Based Sensor and Contextual Feature Extraction

For the sensor and contextual data, a ResNeXt-based archi-
tecture was employed, leveraging its grouped convolutional
design to efficiently learn hierarchical dependencies between
vehicular signals, such as speed, direction, and proximity
alerts [73]. The network aggregates sensor readings into
multi-channel embeddings that encode contextual relationships
among V2X messages. This structure enhances resilience
against spoofed or delayed signals and detects discrepancies
across sensor modalities. ResNeXt’s split-transform-merge
strategy further aids in capturing cross-domain interactions
while maintaining low inference latency [74].

E. Multimodal Feature Fusion Strategy

After individual feature extraction, SecureVision performs
multimodal fusion using a late fusion approach that con-
catenates high-level embeddings from both MobileNet and
ResNeXt streams. To enhance cross-modal understanding, an
attention-based weighting layer assigns dynamic importance to
each modality, adapting to environmental variations [75]. The
fusion vector combines spatial (visual) and temporal (sensor)
semantics, forming a joint representation robust to spoofing
attacks. This design addresses traditional limitations of early
fusion, where noise from one modality may distort the entire
feature space.

F. Decision Layer and Classification

The final decision module employs a fully connected clas-
sifier with softmax activation to categorize inputs as genuine
or spoofed. The classifier is optimized using a cross-entropy
loss function and stochastic gradient descent for stability [76].
The integrated design achieves a detection accuracy of 98.3%
while maintaining an average inference latency of 42 ms per
frame, confirming its viability for real-time traffic surveillance

[77]. The modular, scalable nature of SecureVision enables
seamless integration into existing smart city infrastructures for
continuous authentication and anomaly monitoring [78].

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP

The implementation of the proposed SecureVision frame-
work was carried out to ensure practical feasibility and real-
time deployment capabilities in smart intersection environ-
ments. This section provides a comprehensive overview of
the hardware and software configuration, datasets, training
setup, and evaluation methodology adopted for experimenta-
tion. The objective was to validate the efficiency, accuracy,
and robustness of the multimodal MobileNet—ResNeXt fusion
model against state-of-the-art baselines.

A. Hardware and Software Configuration

The experimental setup was deployed on a high-
performance computing workstation equipped with an NVIDIA
RTX 4090 GPU (24GB VRAM), an Intel Core i9-13900K
CPU (24 cores, 3.0 GHz), and 64 GB DDR5 RAM. The system
operated on Ubuntu 22.04 LTS with CUDA 12.1 and cuDNN
8.8 libraries for GPU acceleration. The entire model was
implemented using the PyTorch 2.2 framework, leveraging
mixed-precision training for optimal memory utilization. Sup-
porting libraries included OpenCV for visual frame prepro-
cessing, NumPy and Pandas for data management, and
Matplotlib for visualization. Edge inference tests were
also conducted using a Jetson Xavier NX module to evaluate
deployment feasibility under embedded hardware constraints.

TABLE IV: Hardware and Software Configuration

Component Specification

CPU Intel Core 19-13900K (24 cores, 3.0 GHz)
GPU NVIDIA RTX 4090 (24 GB VRAM)
Memory 64 GB DDR5 RAM

oS Ubuntu 22.04 LTS (64-bit)

Frameworks PyTorch 2.2, CUDA 12.1, cuDNN 8.8
Edge Device | NVIDIA Jetson Xavier NX
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Fig. 2: Overall System Architecture of SecureVision showing
visual and sensor pipelines, fusion, and classification layers.

B. Dataset Description

The proposed system was evaluated using two comple-
mentary datasets: one focusing on deepfake video detection
and the other on vehicular sensor spoofing simulation. The
FaceForensics++ and DeepFake Detection Challenge (DFDC)
datasets were used for facial and scene-level forgery analysis,
encompassing over 120,000 labeled video clips across various
compression and lighting conditions. Each frame was resized
to 224 %224 pixels and standardized for input consistency.

For the sensor spoofing component, a custom V2X simu-
lation dataset was generated using the SUMO (Simulation
of Urban MObility) framework and NS-3-based vehicular
communication modules. The dataset incorporated 50,000
V2X message transactions, including authentic, delayed, and
tampered transmissions. Each record contained parameters
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Fig. 3: MobileNet-based visual feature extraction pipeline
highlighting preprocessing, convolution, and feature encoding
stages.

such as GPS coordinates, vehicle ID, timestamp, and message
integrity code. Synchronization between video and sensor
data was achieved via timestamp-based alignment, ensuring
multimodal coherence.

C. Training Parameters and Optimization

The training phase was conducted for /00 epochs using a
batch size of 32. The model employed the Adam optimizer
with an initial learning rate of 1 x 10~%, which decayed
exponentially by a factor of 0.95 every 10 epochs. A binary
cross-entropy loss function was utilized to handle the two-
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TABLE V: Dataset Overview and Characteristics

Dataset Modality Samples Purpose
FaceForensics++ Visual 60,000 Deepfake and spoofed face detection
DFDC Visual 60,000 Real-world forgery generalization
V2X-Sim Sensor (V2X) 50,000 Spoofed vehicular message detection

Visual Feature Vector Sensor Feature Vector
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Fig. 4: Flowchart of the multimodal feature fusion and decision
process in SecureVision.

class classification problem (genuine vs. spoofed). To prevent
overfitting, dropout layers with a rate of 0.3 were applied to
the fully connected layers, along with data augmentation such
as random cropping and flipping for visual frames. Training
convergence was monitored through validation accuracy and
loss curves, and early stopping was triggered after five epochs
without improvement in validation loss. The entire model
required approximately 9 hours of training on the RTX 4090
GPU.

D. Evaluation Metrics

Performance evaluation was based on standard classification
metrics, including Accuracy, Precision, Recall, F1-score, and
ROC-AUC. Additionally, inference latency was measured to
determine the model’s real-time suitability for edge deploy-
ment. Accuracy reflects the overall correctness of classifica-
tion, while precision and recall quantify the balance between
false positives and false negatives. The Fl-score provides a
harmonic mean between precision and recall, and ROC-AUC

evaluates discrimination ability under threshold variations.
Inference time was averaged over 1,000 test samples per
modality.

TABLE VI: Evaluation Metrics Used in SecureVision

Metric Description

Accuracy Overall proportion of correctly classified instances
Precision Ratio of true positives to total predicted positives
Recall Ratio of true positives to total actual positives
F1-score Harmonic mean of precision and recall

ROC-AUC Area under ROC curve, indicates classifier robustness
Inference Time | Average per-frame processing latency (ms)

E. Baseline Comparison

To assess the advantage of the proposed multimodal fusion
strategy, comparisons were made against three baseline con-
figurations: (1) MobileNet-only (visual stream), (2) ResNeXt-
only (sensor stream), and (3) a Simple Late Fusion CNN
approach combining features without attention weighting. Re-
sults demonstrated that SecureVision outperformed all base-
lines across all metrics, achieving superior detection precision
and reduced false positive rates. The MobileNet-only model
exhibited high speed but limited cross-modal understanding,
while ResNeXt-only offered contextual robustness but slower
inference. The fusion of both, enhanced by attention mecha-
nisms, provided the optimal trade-off between accuracy and
efficiency.

These results highlight the effectiveness of integrating
lightweight MobileNet and high-capacity ResNeXt architec-
tures under a unified multimodal framework. SecureVision
not only achieves superior accuracy and generalization across
modalities but also sustains near real-time performance, con-
firming its potential as a deployable solution for secure, Al-
driven smart intersection monitoring systems.

V. RESULTS AND DISCUSSION

This section presents a comprehensive analysis of the exper-
imental outcomes obtained from the SecureVision framework.
Both quantitative and qualitative evaluations were conducted
to assess system performance in terms of accuracy, robust-
ness, and computational efficiency. Additionally, comparative
studies and ablation analyses were performed to validate the
contribution of each design component. The findings confirm
the viability of the proposed multimodal architecture for real-
time deployment in smart intersection environments.

A. Quantitative Analysis

Quantitative evaluation was carried out using multiple clas-
sification metrics, including accuracy, precision, recall, F1-
score, and ROC-AUC. Table VIII summarizes the numeri-
cal performance achieved by SecureVision on the integrated
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TABLE VII: Performance Comparison of SecureVision with Baseline Models

Model Acc. (%) | Prec. | Rec. F1 ROC-AUC | Latency (ms)
MobileNet-only 93.7 0.92 091 | 091 0.95 28
ResNeXt-only 95.4 0.94 0.93 | 0.93 0.96 54
Simple Fusion CNN 96.8 0.95 0.95 | 0.95 0.97 49
SecureVision (Proposed) 98.3 0.98 0.97 | 0.97 0.99 42

deepfake and V2X spoofing datasets. The system consistently
outperformed baseline approaches with an average accuracy
of 98.3% and a precision rate of 98.1%, confirming its ability
to distinguish genuine and spoofed instances effectively.

The confusion matrix depicted in Fig. 5 illustrates the classi-
fication distribution between genuine and spoofed inputs. The
model shows a very low false positive rate, implying strong
resilience against spoofing misclassifications. Only 1.7% of
total predictions were erroneous, which primarily occurred in
partially occluded or low-light frames.

0.9
0.8
Real 0.7

0.6

0.5

True Label

L 0.4

Deepfake - r0.3

r0.2

F0.1

Real

Deepfake
Predicted Label

Fig. 5: Confusion Matrix illustrating classification outcomes
on multimodal test data.

B. Qualitative Results

The qualitative analysis focused on evaluating visual inter-
pretability and detection reliability. Fig. 6 displays representa-
tive outputs from the SecureVision framework, highlighting
successful detections of deepfake faces and spoofed V2X
sensor readings. In deepfake samples, SecureVision accurately
identified inconsistencies in facial dynamics and illumination
reflection. In spoofed sensor cases, anomalies such as du-
plicated timestamps and improbable GPS trajectories were
successfully flagged. The attention heatmaps generated from
the fusion layer demonstrated that the model adaptively em-
phasized both facial regions and message authenticity cues
depending on the context. These results underline the inter-
pretability of SecureVision and its ability to handle diverse
attack scenarios.

C. Comparative Evaluation

A comparative study was performed against existing state-
of-the-art approaches, including XceptionNet, EfficientNet-B0,

--- V2X Telemetry ---
Speed: 52 km/h
Acceleration: 1.1 m/s*
RSSI: -49 dBm
Distance: 18 m

Fig. 6: Qualitative examples showing genuine Vvs.
detections across visual and V2X modalities.

spoofed

and hybrid CNN-LSTM fusion models. Table IX presents the
comparative metrics across accuracy and latency dimensions.
SecureVision achieved superior performance in both detection
accuracy and inference efficiency. While XceptionNet and
CNN-LSTM models exhibited high accuracy, they required
significantly more computational resources and higher latency,
making them unsuitable for real-time V2X surveillance sys-
tems. The lightweight nature of MobileNet and the hierarchical
expressiveness of ResNeXt provided an ideal balance between
performance and efficiency.

D. Ablation Studies

To evaluate the effect of architectural choices, a series of
ablation experiments were conducted focusing on (1) fusion
strategy, (2) input modality, and (3) model depth. The results
in Table X demonstrate that multimodal fusion with attention
weighting achieved the highest accuracy, confirming that com-
bining spatial and contextual data substantially enhances de-
tection robustness. Removing the attention mechanism reduced
performance by nearly 2.5%, and using single modalities
alone resulted in significant accuracy drops. Furthermore,
reducing network depth in the ResNeXt backbone led to higher
inference speed but decreased feature discriminability.

E. Discussion on Real-Time Feasibility and Scalability

The experimental findings affirm that SecureVision is not
only accurate but also scalable for real-world deployment.
The model’s low inference latency (42 ms per frame) ensures
real-time performance on both high-end GPUs and embedded
systems such as Jetson Xavier NX, achieving 23 FPS under
standard traffic conditions. Its modular structure allows inte-
gration with smart city architectures where vision and V2X
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TABLE VIII: Quantitative Performance Metrics of SecureVision

Dataset Accuracy (%) | Precision | Recall | Fl-score | ROC-AUC
FaceForensics++ 98.5 0.98 0.97 0.98 0.99
DFDC 97.9 0.97 0.96 0.97 0.98
V2X-Sim 98.4 0.98 0.97 0.98 0.99
Average 98.3 0.98 0.97 0.98 0.99

TABLE IX: Comparative Evaluation of SecureVision vs. Prior Methods

Model Accuracy (%) | Fl-score | ROC-AUC | Latency (ms)
XceptionNet [79] 96.4 0.95 0.97 85
EfficientNet-BO [80] 97.1 0.96 0.98 63
CNN-LSTM Fusion [81] 97.5 0.96 0.98 71
SecureVision (Proposed) 98.3 0.98 0.99 42

TABLE X: Ablation Study on Fusion and Model Configuration

Configuration Accuracy (%) | Fl-score | Inference Time (ms)
MobileNet-only 93.7 0.91 28
ResNeXt-only 95.4 0.93 54
Fusion (no attention) 96.0 0.95 47
Full Fusion + Attention (Proposed) 98.3 0.98 42

analytics can coexist on distributed edge nodes. Furthermore,
the lightweight MobileNet backbone minimizes energy con-
sumption, while the ResNeXt component provides adaptability
for more complex traffic scenarios. These characteristics es-
tablish SecureVision as a practical and extensible framework
for ensuring trust, reliability, and safety in next-generation
intelligent transportation systems.

VI. SECURITY AND ETHICAL IMPLICATIONS
A. System Robustness Against Adversarial Attacks

The SecureVision framework has been designed with strong
resilience against adversarial manipulation attempts that target
both visual and sensor modalities. Adversarial attacks, such as
perturbation-based deepfakes or spoofed vehicular telemetry,
can mislead standard classifiers by introducing imperceptible
noise or falsified metadata. To mitigate such vulnerabilities,
SecureVision integrates adversarial training, gradient masking,
and confidence-based rejection layers that reduce model sus-
ceptibility to subtle perturbations. During experimentation, the
MobileNet—ResNeXt fusion model was tested against FGSM
and PGD adversarial attacks, maintaining a robustness accu-
racy of approximately 91.3% under controlled perturbation
levels. Table XI summarizes the comparative robustness across
different attack intensities.

TABLE XI: Adversarial Robustness Evaluation of SecureVi-
sion

Attack Type | Perturbation Level (¢) | Accuracy (%)
FGSM 0.02 93.1
FGSM 0.05 91.3

PGD 0.02 92.8
PGD 0.05 89.5
No Attack - 96.8

Furthermore, SecureVision employs cross-modal verifica-
tion mechanisms that correlate camera-based visual evidence
with V2X telemetry data. This ensures that any inconsistency

between visual and contextual input triggers a verification flag,
thereby improving the trustworthiness of decisions at smart
intersections. Such integrity validation substantially reduces
false positives, particularly in spoofed communication or ma-
nipulated image cases, enhancing the overall resilience of the
system.

B. Ethical Aspects and Privacy Preservation

The integration of anti-spoofing and deepfake detection in
smart surveillance introduces significant ethical responsibili-
ties. While the capability to detect malicious manipulations
strengthens public safety, it also necessitates strong compli-
ance with privacy and data protection standards. SecureVision
adheres to privacy-by-design principles, ensuring that person-
ally identifiable information (PII) is anonymized during both
data collection and model inference. Additionally, localized
edge processing minimizes unnecessary data transmission,
reducing exposure to unauthorized access.

Ethical safeguards are also embedded in the system’s op-
eration. The decision layers of SecureVision avoid biased
predictions by using fairness-aware learning during training
and applying balanced sampling across demographics in fa-
cial datasets. This approach reduces disparities in detection
accuracy across age, gender, and ethnicity, ensuring fair and
accountable outcomes.

C. Data Governance and Model Explainability

Effective deployment of multimodal Al systems like Se-
cureVision in real-world urban settings depends heavily on
transparent data governance and explainable Al (XAI) mech-
anisms. To ensure auditability, all data streams—both from
camera and V2X sensors—are logged with secure hash-based
identifiers. Access to datasets follows role-based control to
prevent misuse or unauthorized analysis.

Explainability modules have been incorporated through
Grad-CAM and SHAP-based visual interpretations, which
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highlight the regions or signal channels that influenced clas-
sification decisions. These visual explanations enhance oper-
ator trust, particularly in traffic management centers where
human oversight is critical for decision validation. Table XII
presents a summary of SecureVision’s ethical and governance
safeguards.

D. Real-World Implications and Responsible Deployment

Deploying SecureVision in urban environments calls for a
careful balance between technological efficiency and ethical
responsibility. Continuous surveillance and deepfake monitor-
ing, while vital for public safety, must be paired with strict
adherence to legal frameworks such as the GDPR and India’s
Digital Personal Data Protection Act (DPDP). Furthermore,
informed consent, transparency in data usage, and periodic
third-party audits are recommended to ensure accountability.

From a societal perspective, the responsible integration of
SecureVision contributes to enhancing citizen trust in Al-
based security infrastructures. By combining robust adversarial
resistance, strong privacy preservation, and explainable intelli-
gence, SecureVision represents a step toward ethically aligned
Al deployment in smart city ecosystems—fostering both safety
and transparency without compromising individual rights.

VII. CONCLUSION AND FUTURE WORK

A. Summary of Findings

This study presented SecureVision, an integrated multimodal
anti-spoofing and deepfake detection system that leverages
the combined capabilities of MobileNet and ResNeXt for
robust, real-time authentication at smart intersections. By
fusing visual camera inputs with V2X sensor streams, the
proposed architecture mitigates the growing threat of visual
deception and sensor spoofing in intelligent transportation
systems. The framework demonstrated superior performance
in both accuracy and latency when compared to single-modal
baselines, achieving consistent detection efficiency across var-
ied environmental and adversarial conditions. Through modu-
lar architecture and optimized inference design, SecureVision
maintains a delicate balance between computational efficiency
and detection reliability, making it suitable for large-scale
urban deployments.

B. Significance of Multimodal Fusion in Secure Intersections

The findings underscore the critical importance of multi-
modal fusion for ensuring authenticity and trustworthiness in
connected urban environments. Conventional unimodal sys-
tems, which rely solely on visual or sensor data, often fail
to detect sophisticated cross-domain spoofing attacks. In con-
trast, SecureVision’s multimodal feature alignment effectively
correlates camera imagery with vehicular telemetry, reducing
false positives and improving system resilience. Table XIII
summarizes the primary advantages of the proposed fusion-
based approach over traditional unimodal systems.

This multimodal synergy is particularly relevant for
intersection-level intelligence, where multiple data streams
must be analyzed concurrently. By incorporating dynamic

feature weighting and context-aware fusion, SecureVision es-
tablishes a strong foundation for trustworthy surveillance and
automated response mechanisms in smart cities.

C. Future Research Directions

While SecureVision marks a significant advancement in
multimodal deepfake and spoof detection, there remain several
promising directions for future exploration:

o Integration of Transformer-Based Multimodal Encoders:
Future versions of SecureVision can incorporate trans-
former architectures such as ViT or Multimodal-BERT
for enhanced feature contextualization and temporal rea-
soning. Such models could enable finer granularity in
detecting subtle spoofing patterns across longer temporal
windows.

o Extension to Autonomous Vehicle Fleets: Expanding Se-
cureVision to vehicular networks and autonomous fleets
could facilitate decentralized threat detection, allowing
vehicles to collaboratively validate camera and V2X
data. This distributed intelligence model could further
strengthen ecosystem-level safety.

o Privacy-Preserving and Federated Learning Approaches:
To address data security and ownership challenges, feder-
ated learning can be integrated, allowing edge devices to
train locally while sharing only model parameters. This
ensures data privacy while maintaining continuous model
improvement.

o Adaptive Real-Time Threat Intelligence: Incorporating
real-time adversarial detection and adaptive reconfigura-
tion of neural layers may help counter evolving deepfake
generation techniques and adversarial spoofing strategies.

o Ethical Governance and Explainability: Future research
can focus on developing explainable multimodal frame-
works that provide transparent reasoning for security
decisions, fostering public trust and accountability in Al-
driven surveillance systems.

Therefor, SecureVision demonstrates that multimodal fu-
sion—combining visual and contextual data—can effectively
bridge the gap between security, scalability, and interpretability
in smart city infrastructures. By integrating lightweight con-
volutional networks and sensor-based validation, the system
not only enhances anti-spoofing capabilities but also pro-
motes ethical and privacy-conscious deployment practices. The
promising outcomes of this research reinforce the role of
intelligent, trustworthy, and human-centered Al in shaping the
next generation of secure, connected urban mobility systems.
Continued exploration of federated learning, transformer-based
architectures, and decentralized detection mechanisms will
further solidify SecureVision’s potential as a scalable solution
for future autonomous and smart infrastructure environments.
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