E-ISSN: 3107-507X

JOURNAL OF SCIENTIFIC INNOVATION AND ADVANCED RESEARCH (JSIAR), VOLUME 1, ISSUE 7, OCTOBER 2028 https://jsiar.com

¥ editor@jsiar.com

AI-Driven Zero Trust Architectures for Privacy-Centric Database
Management Systems

Vipin Gupta*, Sunil Kumar Prajapati’, Nancy Kushwaha*, Isha Nayan®, Sarman Ray!
>“J”;§(][Department of Computer Science and Engineering
*Y58MNoida International University, Greater Noida, India
Email: *thevipinguptal@gmail.com, Skushi dutt356@gmail.com

Abstract—Traditional database management systems rely
heavily on perimeter-based security models that implicitly as-
sume trust within organizational boundaries. This conventional
approach often leaves databases vulnerable to insider threats,
credential misuse, and dynamic cyberattacks that exploit static
trust assumptions. To overcome these challenges, the Zero Trust
paradigm introduces a “never trust, always verify”’ philosophy,
ensuring that every request, user, and process undergoes contin-
uous verification before gaining access to critical data assets.
This research explores an Al-driven Zero Trust architecture
tailored for privacy-centric database management systems. The
integration of Artificial Intelligence enables adaptive trust man-
agement, where access decisions are dynamically adjusted based
on behavioral patterns, contextual risk, and anomaly detection.
The proposed framework incorporates continuous authentication,
predictive analytics, and privacy-preserving mechanisms such as
encrypted data transactions and intelligent policy enforcement.
Experimental evaluations demonstrate improved data confiden-
tiality, reduced attack surfaces, and enhanced decision precision
compared to conventional access control methods. The study
concludes that AI-augmented Zero Trust architectures represent
a promising pathway toward self-defending, privacy-oriented,
and resilient next-generation database ecosystems.

Keywords—Artificial Intelligence, Zero Trust Architecture,
Database Security, Privacy Preservation, Adaptive Access Con-
trol, Continuous Authentication, Trust Evaluation

I. INTRODUCTION

The digital era has witnessed a dramatic escalation of
database breaches across sectors, fueled by external attackers,
credential theft, and insider misuse. For instance, in 2023, the
MOVEit vulnerability led to the compromise of data from over
2,700 organizations, affecting tens of millions of records [1].
Insider actions—whether malicious or accidental—account for
a large fraction of data breach events; it is estimated that up
to 60% of data breaches are linked to insiders [2] [3]. In
2024, 83% of organizations reported experiencing at least one
insider incident over the prior year [4]. Compounding this,
human error is implicated in as many as 95% of breaches,
often through careless credential handling or misconfiguration
[5]. These trends underscore the urgency of rethinking trusted
database protection in cloud, hybrid, and distributed environ-
ments.

Traditional perimeter-based DBMS security models rest on
the assumption that an attacker must first breach an external
boundary before accessing internal resources. Firewalls, net-
work segmentation, and VPNs enforce the notion of a “trusted
internal zone.” However, once an adversary penetrates that
boundary, lateral movement often occurs unchecked. Rigid,

static access control policies—such as preassigned roles or
fixed privileges—Ilack the ability to adapt to evolving threat
contexts. Moreover, as organizational networks become more
distributed and cloud-centric, that perimeter dissolves, render-
ing such models ineffective.

To overcome these vulnerabilities, the Zero Trust paradigm
advocates a shift: no user, device, or process is implicitly
trusted. Instead, “never trust, always verify” becomes the
guiding principle. Every access request must be authenti-
cated, authorized, and continuously validated [38] [33]. Zero
Trust architectures typically employ micro-segmentation, least
privilege, dynamic policy enforcement, and continuous mon-
itoring [7] [8]. But applying these ideas directly to DBMS
workloads raises new challenges: how to perform query-level
trust evaluation, how to detect subtle behavioral deviations in
access patterns, and how to maintain privacy in sensitive data
operations.

In this work, we propose an Al-Driven Zero Trust architec-
ture specially designed for privacy-centric database manage-
ment systems. Our approach blends machine learning—based
behavioral analytics, adaptive trust scoring, and policy learning
to enable continuous authentication, predictive anomaly detec-
tion, and privacy-preserving query controls. We make three
main contributions: 1. A real-time trust-scoring engine that
assigns dynamic risk levels to users, sessions, and queries;
2. An anomaly detection subsystem that flags suspicious
access behaviors and influences access decisions; 3. A policy
adaptation module that learns optimal enforcement rules to
balance security and performance.

We validate our design via experiments in a cloud-based
testbed, comparing against conventional DBMS access control
baselines. The results indicate that our Al-augmented Zero
Trust model significantly reduces unauthorized access, im-
proves detection of insider misuse, and sustains acceptable
performance overhead.

The remainder of the paper is structured as follows. Section
Il reviews related work on database security, Zero Trust
models, and Al in security. Section III describes the proposed
architecture and Al modules in detail. Section IV presents
the experimental setup and evaluation metrics. Section V
discusses results, trade-offs, and limitations. Finally, Section
VI concludes and outlines future directions.
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TABLE I: Conventional DBMS Security Techniques: Capabilities and Limitations

Technique Strengths Limitations
Encryption (at rest/in transit) Protects stored and transported data Requires decryption for processing; key management com-
plexity

Searchable / homomorphic encryp-
tion
Differential privacy

RBAC / ABAC Administrative clarity (RBAC); contextual
expressiveness (ABAC)
Auditing Post-event traceability

Enables operations on encrypted content

Provable privacy guarantees for outputs

High compute overhead; still maturing for large DBMS

Utility/privacy tradeoffs; requires noise calibration

Static roles (RBAC) do not capture dynamic risk; ABAC
policy complexity

Usually reactive; high data volume complicates real-time use

II. LITERATURE REVIEW

This literature review surveys two decades of research
and practice relevant to Al-driven Zero Trust databases. We
structure the review under three subthemes: (A) conventional
database security models, (B) the evolution of Zero Trust
architecture, and (C) applications of artificial intelligence in
cybersecurity. Each subsection critically analyzes major con-
tributions, highlights limitations, and concludes with research
gaps that motivate the present work.

A. Conventional Database Security Models (2005-2025)

Early and mid-period database security work emphasized
cryptographic protection, access control paradigms, and de-
tailed auditing mechanisms. Encryption at rest and in transit
matured into practical deployments across enterprise DBMS,
while developments in searchable and homomorphic encryp-
tion sought to enable computation over encrypted data without
leakage [27] [28] [48] [49] [50]. Differential privacy provided
a rigorous mathematical framework for limiting information
leakage from query results and has been integrated into many
database analytics workflows [29] [30]. Role-based access
control (RBAC) and its derivatives remained popular due to
their administrative simplicity and clear semantics; however,
reviews of RBAC and its practical deployments point to
difficulty in capturing context and fine-grained risk adaptations
required by modern cloud workloads [31] [32].

Auditing and logging solutions improved in scale and
sophistication, enabling forensic analysis and compliance re-
porting, yet they often operate as reactive controls. Several
empirical studies documented that traditional perimeter de-
fenses and static RBAC policies fail to prevent or quickly
detect insider misuse and credential compromise in cloud
environments [34] [35]. Table I summarizes representative
techniques, their strengths, and principal limitations.

B. Evolution of Zero Trust Architecture (2010-2025)

The Zero Trust concept, popularized by Forrester and later
formalized by national standards bodies, reoriented defense
doctrines from perimeter centricity to continuous verification
and least privilege [36] [37]. NIST SP 800-207 (2020) pro-
vided a structured taxonomy and deployment scenarios for
Zero Trust Architecture (ZTA), formalizing control points
such as Policy Decision Points (PDPs), Policy Enforcement
Points (PEPs), and continuous monitoring requirements [38].
Industry and academic literature since NIST have explored

micro-segmentation, software-defined perimeters, and identity-
centric controls as practical ZTA components [37] [39].

Despite robust high-level guidance, applying ZTA specif-
ically to DBMS workloads has proven nontrivial. Database
systems require low-latency access for queries and transac-
tions; introducing continuous, per-request verification at query
time can add latency and complexity. Several architecture
papers and whitepapers propose layering Zero Trust proxies
or gateways in front of database services, but few present
comprehensive, DBMS-integrated trust scoring mechanisms
or privacy-preserving enforcement that operate at query gran-
ularity [38] [47]. Figure 1 illustrates a typical Zero Trust
deployment adapted for data services, highlighting where Al
modules could be inserted.

C. Al Applications in Cybersecurity and Databases (2005—
2025)

Machine learning and related AI methods have been increas-
ingly adopted for continuous monitoring, anomaly detection,
and adaptive policy generation. The last decade saw a shift
from signature-based defenses to behavior-driven detection:
User and Entity Behavior Analytics (UEBA) aggregates varied
telemetry (queries, API calls, session metadata) and applies
unsupervised and supervised learning to flag deviations [40]
[41] [51] [9] [10] [11]. Advances in deep learning (autoen-
coders, LSTM-based sequence models) and ensemble methods
(Isolation Forest) have improved detection of subtle insider
threats in audit logs [42] [43]. Federated learning and privacy-
aware model training techniques enable cross-organization
learning without raw data sharing, making collaborative threat
models feasible for multi-tenant DBMS providers [46].

Nevertheless, the literature also reveals important con-
straints. Al models can be brittle—suffering from concept
drift, adversarial manipulation, and class imbalance—making
purely ML-driven enforcement risky without interpretability
and human-in-the-loop safeguards [52] [53] [55]. Furthermore,
most Al work focuses on network or host telemetry; compar-
atively little research has concentrated on model architectures
that directly evaluate database query semantics, schema con-
text, and multi-step transaction patterns in real time. Notable
exceptions explore semantic profiling of query patterns and
anomaly scoring but typically target offline analysis rather than
low-latency enforcement [44] [45] [24] [25] [26].

D. Synthesis of Gaps in the Literature

From the above subthemes, three recurring gaps emerge that
motivate the proposed research:
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Fig. 1: Proposed Zero-Trust Architecture for Dynamic Database Access Control: This diagram illustrates a multi-layered
framework for enforcing zero-trust principles in database interactions. The flow begins at the Identity & Context Layer, where
authentication requests and continuous telemetry data are collected. This information is processed by the Policy & Intelligence
Layer, which consists of a Policy Decision Point (PDP) and an Al-driven anomaly detection module. The PDP synthesizes
identity, context, and real-time risk alerts to make dynamic access decisions. These decisions are enforced at the Data Plane by
the Policy Enforcement Point (PEP), which regulates all queries to the underlying database services. Critical feedback loops
(dashed and dotted lines) ensure continuous adaptation by feeding audit logs back to the telemetry system and alerting the

PDP to potential security anomalies.

1) Lack of integrated Al-driven trust computation within
DBMS: While UEBA and broader ML approaches exist,
there is limited work embedding trust scoring engines
directly into database policy decision flows, especially
at query granularity [38] [40].

2) Poor context-aware verification mechanisms for database
operations: Existing Zero Trust frameworks articulate
continuous verification requirements but do not prescribe
how context from schema, query intent, and transaction
semantics should influence access decisions [36] [37].

3) Absence of dynamic, automated policy learning in Zero
Trust databases: Most deployments rely on manually
authored policies or static templates; research on re-
inforcement learning or online policy adaptation for
DBMS access control is nascent [54] [53] [17].

These gaps indicate the need for an architecture that (a)
computes dynamic trust at the user/session/query level us-
ing behavioral and semantic signals, (b) integrates privacy-
preserving mechanisms that allow enforcement without ex-
posing raw sensitive data (e.g., via encrypted telemetry or DP
noise injections), and (c) supports automated policy adaptation
with explainability constraints. The present study formulates
the following research question:

Research Hypothesis: Can an Al-driven Zero Trust architec-
ture, which computes real-time trust scores from multi-modal
telemetry and adapts enforcement policies using online learn-
ing, reduce unauthorized database accesses and insider misuse
while maintaining acceptable query latency and preserving
data privacy?
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Fig. 2: Al-Enhanced Zero-Trust Architecture for Dynamic Database Security

E. Concluding Remarks

The literature over the past two decades has produced ro-
bust building blocks—advanced encryption primitives, policy
frameworks, and Al detection methods—but these elements
remain insufficiently integrated within DBMS policy flows.
By addressing the three identified gaps, research can move
beyond perimeter thinking and towards data systems that are
context-aware, adaptive, and privacy preserving.

III. RESEARCH METHODOLOGY AND SYSTEM DESIGN

This section presents the core technical framework of the
proposed Al-driven Zero Trust Database Management System
(DBMNS). It details the system architecture, Al modules, access
control workflow, data privacy mechanisms, and algorithmic
underpinnings. The design emphasizes continuous verification,
adaptive trust computation, and privacy preservation, providing
a unified methodology for next-generation database security.

A. System Overview

The proposed system integrates Zero Trust principles into

the DBMS while leveraging Al for dynamic trust assessment
and adaptive policy enforcement. The architecture consists of
four main layers: User/Session Interface, Al Security Layer,
Policy Enforcement Layer, and Database Storage Layer. 2
illustrates the conceptual block diagram.
The AI Security Layer continuously analyzes incoming re-
quests, evaluates trust scores, detects anomalies, and informs
the Policy Enforcement Layer. The design allows low-latency
query processing while enforcing dynamic policies that reflect
user behavior, device context, and transaction semantics.

B. Al Modules

The AI modules are the backbone of adaptive trust man-
agement. Three primary functions are performed:

1) Anomaly Detection: Transaction logs, query sequences,
and access patterns are fed into a hybrid deep learn-
ing model combining LSTM networks for sequential
behavior modeling and autoencoders for anomaly scor-
ing. Suspicious deviations from historical patterns are
flagged in real time.

Trust Scoring: Each session and query receives a dy-
namic trust score 7 (u,q,t), computed as a weighted
combination of behavioral anomaly A(u,q,t), contextual
risk C(u,q,t), and historical compliance H (u):

2)

T(u,q,t) = aA(u,q,t) + BC(u,q,1) + vH (u)

where «,f,y € [0,1] are tunable hyperparameters re-
flecting system sensitivity.

Predictive Risk Assessment: Using supervised ML mod-
els, the system predicts the likelihood of future misuse or
breach for a given user session. Risk predictions inform
dynamic policy adaptation in the enforcement layer.

3)

C. Access Control Workflow

The access control process is designed as a continuous, Al-
augmented pipeline (see Figure 3):

1) Users or applications submit a query request.

2) Continuous authentication is performed using multi-
factor and device posture evaluation.

3) The Al module computes trust scores and assesses
contextual risk in real time.

4) Policy Enforcement Layer applies dynamic rules based
on the computed trust score.

5) Access is granted, denied, or logged for further review.

6) All actions are recorded in a secure audit log for

traceability and compliance.

Table II summarizes the workflow and associated Al tasks.
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TABLE II: Access Control Workflow and Al Integration

Stage Function

AI Component

Authentication
Trust Evaluation
Policy Enforcement
Logging

Compute dynamic risk score

Verify identity and device posture

Grant or deny access based on trust
Record access and anomaly events

Multi-factor validation + device profiling
LSTM + Autoencoder hybrid

Rule engine with dynamic thresholds
Secure audit log

D. Data Privacy Mechanisms

To ensure sensitive data remains protected, the system
incorporates:

« Encryption: Queries and responses are encrypted using
AES-256 at rest and TLS 1.3 in transit.

« **Differential Privacy (DP):** Noise is added to query
results where required, ensuring statistical outputs do not
leak individual data entries [30].

o Federated Learning (FL): Al models are trained across
distributed database nodes without sharing raw data,
preserving tenant confidentiality [46].

E. Algorithmic Details

The trust evaluation engine operates using the following
pseudocode:

TABLE III: Access Decision Algorithm based on Trust Score
Computation

Step Description

Input Query ¢ from user u at time ¢

Output | Access Decision (Grant / Deny) and Trust Score T
1 Authenticate user # and device context.
2 Extract feature vector F(u,q,t).
3 Compute anomaly score A = Autoencoder(F).
4 Compute contextual risk C = ContextModule(F').
5 Retrieve historical compliance H (u).
6 Compute trust score 7 = @A+ C+ yH.
7 If T > Threshold then:
8 Grant Access.
9 Log event in secure audit.
10 Else:
11 Deny Access.
12 Log anomaly and trigger alert.

Each design choice is justified as follows:

o« LSTM/Autoencoder hybrids allow sequence-aware
anomaly detection, critical for detecting subtle misuse
over time.

o Weighted trust scoring ensures multi-factor risk assess-
ment combining behavior, context, and history.

o Differential Privacy and Federated Learning enable
privacy-preserving Al without compromising perfor-
mance.

« Dynamic policy enforcement ensures real-time adaptation
to evolving threats.

The proposed methodology integrates Al-driven trust com-
putation into a layered Zero Trust DBMS. It balances security,
privacy, and performance, with a workflow that continuously
evaluates requests, enforces adaptive policies, and logs ac-
tions for auditing. Figures, tables, and algorithmic pseudocode

collectively provide a transparent blueprint for implement-
ing a next-generation, privacy-centric, Al-enabled Zero Trust
database system.

IV. EXPERIMENTAL SETUP WITH COMPLETE DATA

To validate the proposed Al-driven Zero Trust DBMS,
a comprehensive experimental environment was established.
This section details the datasets, simulated query sessions,
Al feature extraction, trust evaluation, and benchmark results,
providing full transparency and reproducibility.

A. Test Environment

Experiments were conducted on the following environment:

o Databases: MySQL 8.0, PostgreSQL 15, MongoDB 6.0.

o Al Libraries: TensorFlow 2.13, PyTorch 2.1, Scikit-learn
1.3.

o Hardware: Dual Intel Xeon Silver CPUs, 128 GB RAM,
NVIDIA A100 GPU, 2 TB NVMe storage.

o OS: Ubuntu 22.04 LTS.

B. Datasets and Synthetic Data Generation

A hybrid dataset was used, combining real-world logs and
synthetic queries.

TABLE IV: Sample User Session Dataset

Session ID | User ID | Query Type Device Time (s) | Outcome
S001 U001 SELECT Desktop 1.2 Normal
S002 U002 INSERT Mobile 1.5 Normal
S003 U003 UPDATE Desktop 2.1 Anomaly
S004 U001 DELETE Laptop 3.0 Anomaly
S005 U004 SELECT Tablet 1.0 Normal
S006 U002 INSERT Desktop 1.7 Normal
S007 U003 UPDATE Mobile 23 Anomaly
S008 U005 SELECT Desktop 1.1 Normal
S009 U001 INSERT Desktop 1.6 Normal
S010 U006 DELETE Laptop 2.8 Anomaly

Features extracted for AI models included:

¢ Query type and frequency per session.

« Device type and session context.

« Time between queries and session duration.

o Historical user behavior (past anomalies, compliance
score).

C. Al Feature Vector Example

Each query/session is converted into a feature vector
F(u,q,t) as follows:
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Fig. 3: Al-based trust scoring workflow: anomaly detection, contextual risk computation, and dynamic policy adaptation.

TABLE V: Al Feature Vectors for Sessions

Session ID | Query Type (Encoded) | Device (Encoded) | Time(s) | Historical Risk | Feature Vector
S001 0 0 1.2 0.0 [0,0,1.2,0.0]
S003 2 0 2.1 0.3 [2,0,2.1,0.3]
S004 3 1 3.0 0.5 [3,1,3.0,0.5]
S010 3 1 2.8 0.4 [3,1,2.8,0.4]
D. Trust Evaluation and Al Scoring TABLE VI: Sample Trust Scores and Decisions
. . Session ID | Anomaly Score (A) | Trust Score (T) | Decision
Trust scores 7T (u,q,t) were computed using the weighted S001 505 083 Grant
formula: S003 0.70 0.42 Deny
S004 0.65 0.45 Deny
S010 0.80 0.39 Deny
T(u,q,t) = aA(u,q,t)+ BC(u,q,t) + yH(u) S005 0.03 0.88 Grant
where: TABLE VII: Experimental Metrics Results
o A(u,q,t) = anomaly score from LSTM autoencoder. Metric Result
= contextual risk from device, time, and session Detection Accuracy (DA) 94.5%
* Clugt)=c €, ime, and sess False Positive Rate (FPR) 3.2%
metadata. Trust Scoring Latency (TSL) 2.1 ms/query
o H(u) = historical compliance score (0-1 scale). Access Control Efficiency (ACE) 96.7%
e =04 ﬁ —0.35 y= 0.25 Privacy Gain (PG) 0.82 (e-DP scale)
4, .35, 25.
E. Evaluation Metrics F. Baseline Comparisons
The following metrics were measured over 10,000 simulated The proposed system was compared against:
queries: 1) Traditional RBAC: Detection accuracy 71%, latency 0.8
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TABLE VIII: Quantitative Evaluation of AI-Driven Zero Trust DBMS

Metric MySQL | PostgreSQL | MongoDB | Baseline RBAC | Static ZTA
Detection Accuracy (%) 94.5 93.8 94.2 71.0 83.0
False Positive Rate (%) 32 33 9.8 6.5
Trust Scoring Latency (ms/query) 2.1 22 0.8 1.5
Access Control Efficiency (%) 96.7 95.8 96.3 82.5 89.2
Privacy Gain (DP € / FL) 0.82 0.80 0.81 0.00 0.00

ms/query.

2) Static Zero Trust Gateway: Detection accuracy 83%,
latency 1.5 ms/query.

3) UEBA Offline Analysis: Detection accuracy 89%, la-
tency 5.2 ms/query.

G. Observations

o Al-driven trust computation improved anomaly detection
by 5-15% compared to static methods.

o Latency remains low (<3 ms/query) while enforcing dy-
namic policies.

o Privacy-preserving mechanisms (DP, FL) successfully
limited sensitive data exposure without reducing detection
accuracy.

o Access control efficiency increased due to adaptive scor-
ing, reducing unnecessary denials.

H. Experimental Pipeline Figure
V. RESULTS AND DISCUSSION

This section presents the experimental results obtained from
the Al-driven Zero Trust DBMS and provides an in-depth
discussion of the system’s performance, adaptability, and secu-
rity implications. The evaluation focuses on both quantitative
metrics and qualitative insights, with comparisons to baseline
and traditional frameworks.

A. Quantitative Results

The system was tested on 10,000 query sessions across
three database platforms (MySQL, MongoDB, PostgreSQL).
Table VIII summarizes key performance metrics.

B. Qualitative Insights

The proposed Al-driven Zero Trust architecture demon-
strated several key qualitative advantages:

o Adaptability: The system dynamically adjusted trust
thresholds and access policies based on session behavior
and contextual risk. This reduced reliance on static rules,
providing real-time responsiveness to emerging threats.

o Reduced Insider Threats: Continuous verification and
anomaly detection successfully identified 92% of anoma-
lous insider activities that traditional RBAC policies failed
to catch.

o Improved Audit Compliance: All sessions were logged
with detailed trust scores and risk annotations, providing
a transparent trail for regulatory audits and post-incident
analysis.

o Cross-Platform Performance: Minor variations in trust
scoring latency (2.1-2.3 ms/query) across MySQL, Post-
greSQL, and MongoDB indicate strong adaptability with
negligible overhead.

C. Comparison with Existing Frameworks

The Al-enhanced Zero Trust DBMS was compared against:

o Traditional RBAC: High false positives (9.8%), limited
anomaly detection, static access control.

« Static Zero Trust Gateways: Moderate improvements in
detection (83%) but lacked adaptive trust computation.

« UEBA systems: Offline detection, higher latency ( 5
ms/query), limited real-time prevention capability.

As illustrated in Figure 5, the proposed system outperforms
both static Zero Trust and traditional RBAC in terms of
detection accuracy, false-positive reduction, and privacy gain.

D. Trade-Off Analysis

While the proposed system provides superior security, there
are notable trade-offs:

o Computation Overhead: Real-time trust evaluation intro-
duces marginal latency (2.1-2.3 ms/query). However, this
is acceptable compared to the security benefits.

e« Model Complexity vs Interpretability: Hybrid LSTM-
autoencoder models provide high anomaly detection ac-
curacy but require careful monitoring to ensure inter-
pretability for compliance purposes.

o Privacy-Performance Balance: Differential Privacy and
Federated Learning reduce data exposure but slightly
limit statistical accuracy for certain predictive tasks.

E. Discussion

The results indicate that Al-driven adaptive trust mecha-
nisms in a Zero Trust DBMS provide measurable improve-
ments in security, auditability, and privacy compared to con-
ventional methods. The integration of Al allows continuous
learning, context-aware verification, and predictive risk scor-
ing, which are crucial for mitigating advanced insider threats
and complex multi-tenant vulnerabilities.

Notably, the system maintains low latency and high access
efficiency, demonstrating that robust security does not neces-
sarily compromise performance. Moreover, the framework’s
cross-DBMS adaptability suggests wide applicability in het-
erogeneous database environments.

In summary, the experimental evaluation validates the ef-
fectiveness of the proposed Al-driven Zero Trust DBMS.
Quantitative metrics demonstrate superior detection accuracy,
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reduced false positives, and efficient access control. Qualita-
tive insights highlight adaptability, improved compliance, and
insider threat mitigation. The analysis of trade-offs confirms
that modest computational overhead is justified by significant
security gains, supporting the viability of Al-enhanced Zero
Trust architectures for next-generation database management.

VI. CONCLUSION AND FUTURE WORK

This study presented a comprehensive framework for en-
hancing database security by integrating Artificial Intelligence

(AI) with Zero Trust principles in next-generation Database
Management Systems (DBMS). Traditional perimeter-based
security models are increasingly insufficient in the face of
rising insider threats, cloud vulnerabilities, and sophisticated
attack vectors. By adopting a Zero Trust approach—never
trust, always verify—and embedding Al-driven anomaly de-
tection, adaptive trust scoring, and predictive risk assessment,
the proposed system provides a robust and proactive security
solution.

Experimental results across multiple DBMS platforms
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Fig. 5: Detection accuracy comparison of proposed Al-driven
Zero Trust DBMS versus baseline frameworks.

demonstrated quantifiable improvements in key performance
indicators. Detection accuracy increased to 94.5%, false pos-
itive rates were reduced to 3.2%, and trust scoring latency
remained low at 2.1 ms per query. Access control efficiency
exceeded 96%, while privacy-preserving mechanisms such
as Differential Privacy and Federated Learning yielded sub-
stantial privacy gains. Qualitative insights further highlighted
enhanced adaptability, improved audit compliance, and sig-
nificant mitigation of insider threats, confirming the system’s
practical relevance and scalability.

Looking ahead, several promising directions emerge for
future research:

« Blockchain and Quantum-Resistant Encryption Integra-
tion: Leveraging decentralized ledger technology and
post-quantum cryptography can further enhance data
integrity, immutability, and resilience against emerging
threats.

o Explainable AI for Trust Models: Incorporating XAI
methods will provide transparency into Al-based trust
scoring, facilitating regulatory compliance and human
interpretability.

« Autonomous Self-Healing DBMS: Future architectures
may implement fully autonomous systems capable of
detecting, mitigating, and recovering from breaches in
real-time, minimizing human intervention.

¢ Cross-Domain Adaptation: Extending the Al-driven Zero
Trust framework to multi-cloud or hybrid environments
can ensure consistent security across heterogeneous in-
frastructures.

In conclusion, this research establishes a foundational

methodology for Al-enhanced Zero Trust DBMS, delivering
measurable improvements in security, privacy, and adaptabil-
ity. The proposed framework not only addresses current limita-
tions in database trust models but also provides a scalable and
extensible blueprint for the development of future autonomous,
resilient, and privacy-centric database systems.
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