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Abstract—In an increasingly interconnected global economy,
financial systems and supply chains are becoming more inter-
dependent, exposing organizations to compounded risks from
market volatility, operational disruptions, and geopolitical un-
certainties. This paper presents a deep learning framework
for cross-domain risk prediction that integrates financial in-
dicators and supply chain variables into a unified analytical
model. The proposed framework leverages multi-layer neural
networks and recurrent architectures to capture both temporal
dependencies and nonlinear correlations between heterogeneous
datasets. Experimental results demonstrate that the model effec-
tively forecasts emerging risks, offering improved accuracy over
conventional statistical and single-domain predictive methods. By
employing adaptive learning strategies and automated feature
extraction, the system enables early warning and data-driven
decision support for risk mitigation. The study highlights how
deep learning can serve as a convergence point for financial
analytics and supply chain intelligence, providing actionable
insights for policy makers, investors, and logistics managers.
Future work will focus on enhancing explainability, integrating
reinforcement learning for adaptive response, and extending
the model for real-time deployment in large-scale enterprise
environments.
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I. INTRODUCTION

In recent years, the rapid digitalization of financial sys-
tems and the globalization of supply chains have increased
the complexity and vulnerability of organizational operations.
Financial markets are characterized by high volatility, while
supply chain networks often face unpredictable disruptions
due to geopolitical tensions, natural calamities, and techno-
logical failures. As these domains become increasingly inter-
connected, traditional risk management approaches—based on
linear statistical models—struggle to capture the nonlinear and
dynamic dependencies that exist across diverse data streams.
This calls for the development of intelligent frameworks
capable of learning cross-domain relationships and providing
proactive risk predictions in real time.

Deep learning (DL) has emerged as a transformative
technology in predictive analytics, owing to its ability to
model hierarchical representations and discover latent patterns
from large-scale, heterogeneous data. Unlike conventional
regression-based models, DL techniques such as Convolu-
tional Neural Networks (CNN), Long Short-Term Memory
(LSTM) networks, and Transformers can extract temporal and
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contextual dependencies from both structured and unstruc-
tured datasets [1], [3]-[5]. In financial analytics, DL models
have been applied to tasks such as credit risk assessment,
stock volatility forecasting, and fraud detection [2], [6], [10]-
[12]. Similarly, in supply chain management, DL algorithms
have improved demand forecasting, anomaly detection, and
resilience modeling under uncertain conditions [7], [13], [18],
[19]. However, research integrating both financial and supply
chain domains remains limited, despite their strong interde-
pendence in global risk propagation.

This study proposes a unified deep learning framework
for cross-domain risk prediction that simultaneously processes
financial and supply chain indicators. The framework is de-
signed to learn joint representations that capture correlations
between financial volatility, inventory levels, supplier relia-
bility, and macroeconomic indicators. By employing hybrid
deep neural architectures combining CNN and LSTM layers,
the model achieves adaptive feature extraction and temporal
sequence learning, enabling robust prediction of compound
risks. The proposed system aims to enhance early-warning
capabilities for organizations, improving decision-making and
operational resilience.

The contributions of this research are threefold: (1) devel-
opment of an end-to-end deep learning framework for cross-
domain risk forecasting; (2) evaluation of predictive accuracy
against traditional machine learning and statistical baselines;
and (3) demonstration of how data integration across financial
and logistical sources can improve systemic risk assessment.
The study underscores the growing importance of deep learn-
ing as a convergence tool between financial intelligence and
supply chain analytics, contributing to the broader goal of
sustainable and resilient enterprise management.

II. RELATED WORK

Recent advances in deep learning have significantly in-
fluenced both financial risk analysis and supply chain man-
agement, enabling the development of data-driven systems
capable of modeling dynamic, nonlinear dependencies. This
section reviews existing literature across five core dimensions:
financial analytics, supply chain intelligence, hybrid deep
learning architectures, cross-domain learning strategies, and
model explainability. These subtopics collectively define the
research foundation for developing a unified cross-domain
deep learning framework for risk prediction.
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A. Deep Learning in Financial Risk Prediction

Deep learning has been extensively utilized in the financial
domain for tasks such as credit scoring, asset price forecast-
ing, portfolio optimization, and fraud detection. Models such
as Long Short-Term Memory (LSTM) networks and Gated
Recurrent Units (GRU) have proven effective in capturing tem-
poral patterns within high-frequency financial time series [15],
[20], [21], [24]. Convolutional Neural Networks (CNNs) have
also been adapted to extract local dependencies in multivariate
financial signals, improving volatility forecasting accuracy
[16], [25]. Transformer-based architectures, leveraging atten-
tion mechanisms, have recently shown superior performance
in modeling long-range temporal dependencies in stock and
macroeconomic data [17], [26]-[28]. Furthermore, hybrid and
ensemble models combining statistical indicators with learned
representations have demonstrated enhanced generalization
under volatile market conditions [22]. These developments
underscore deep learning’s potential in predicting financial
risks characterized by nonlinear and non-stationary behaviors.

B. Deep Learning for Supply Chain Risk and Resilience

In the domain of supply chain analytics, deep learning
techniques have been adopted to enhance demand forecasting,
supplier evaluation, transportation optimization, and disruption
management. CNN and LSTM networks have been employed
to analyze time-series shipment data, predicting lead-time
variations and production bottlenecks [23], [31], [32]. Inte-
grating external factors such as weather data, news sentiment,
and geopolitical indicators has improved the robustness of
supply chain risk models. Studies report that Transformer-
based architectures and Graph Neural Networks (GNNs) are
effective in capturing relational dependencies among suppliers
and logistics nodes [29], [33], [34]. Recent work highlights
the importance of predictive visibility, where deep models
identify early warning signals to prevent cascading disruptions
in global supply chains [30], [35], [36]. However, most imple-
mentations remain domain-specific and do not fully integrate
financial interdependencies, which can exacerbate operational
vulnerabilities.

C. Hybrid and Ensemble Deep Learning Architectures

Hybrid deep learning architectures combine multiple neu-
ral paradigms to leverage their respective strengths in fea-
ture extraction, temporal modeling, and pattern recognition.
CNN-LSTM hybrids, for example, are commonly employed
for sequential financial and operational data, achieving im-
proved performance over single-model baselines [37], [38],
[41]. Ensemble approaches integrating attention-based and
recurrent layers have also been proposed for multi-factor fi-
nancial forecasting and logistics optimization [39]. In addition,
multi-modal fusion frameworks have emerged, combining tex-
tual, numerical, and visual features—such as economic reports,
market graphs, and satellite images—to enhance predictive
coverage. These architectures form the technical foundation
for cross-domain modeling, where financial and supply chain

variables must be learned simultaneously to understand sys-
temic risk propagation.

D. Cross-Domain and Transfer Learning Approaches

Cross-domain learning has gained traction as a means of
transferring knowledge between related data spaces. Transfer
learning and domain adaptation enable models trained in
one domain (e.g., finance) to be fine-tuned for another (e.g.,
supply chain), thus addressing data scarcity and generalization
issues [40], [42]. Multi-task learning frameworks have also
been used to learn shared representations across heterogeneous
data sources, improving predictive accuracy for joint tasks
[43]. Recent studies explore federated and collaborative learn-
ing schemes, where decentralized models share knowledge
without exposing sensitive data, allowing for secure cross-
enterprise analytics [44], [45]. These developments directly
inform the design of a cross-domain deep learning framework
that fuses financial volatility indicators with supply chain per-
formance metrics to predict compound risks more holistically.

E. Explainability and Model Transparency

The growing application of deep learning in high-stakes
domains such as finance and logistics necessitates model in-
terpretability. Explainable Al (XAI) methods—such as SHAP,
LIME, and attention visualization—provide transparency in
model decision-making, enabling analysts to trace key con-
tributing features [47], [48]. In financial systems, explain-
ability supports regulatory compliance and reduces black-
box risk, while in supply chain contexts, it aids decision-
makers in understanding why certain suppliers or logistics
routes are classified as high-risk [49]. Recent studies have
also emphasized hybrid explainability frameworks that com-
bine model interpretability with uncertainty quantification to
improve trustworthiness in automated predictions [46], [50].
Incorporating such explainability modules into cross-domain
deep learning systems will be essential for operational adop-
tion and risk governance.

Thus, prior literature provides strong evidence of the ben-
efits of deep learning for predictive modeling in both fi-
nance and supply chain management. However, integrated
frameworks that explicitly learn cross-domain representations
and explain risk propagation across interconnected economic
systems remain limited. This research addresses that gap by
proposing a unified deep learning architecture that simultane-
ously models financial and supply chain dependencies, with
explainability and adaptability as key design objectives.

III. METHODOLOGY

The proposed methodology integrates deep learning tech-
niques to develop a cross-domain framework that simulta-
neously models financial and supply chain risk indicators.
The framework employs hybrid neural architectures to cap-
ture spatial-temporal correlations, perform feature fusion, and
produce a unified risk prediction index. The methodological
design consists of four key stages: data acquisition, preprocess-
ing and normalization, feature-level fusion, and hybrid deep
model development.
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A. System Overview

The overall workflow of the proposed model is illustrated in
Fig. 1. The system ingests heterogeneous data from financial
and supply chain sources, processes them through dedicated
neural modules, and merges the learned representations into a
unified predictive model.

B. Data Acquisition and Description

To ensure cross-domain relevance, datasets are collected

from two primary categories:

« Financial Data: Market indices (S&P 500, NSE), currency
exchange rates, commodity prices, and corporate credit
ratings.

o Supply Chain Data: Procurement delays, logistics costs,
supplier performance metrics, and inventory utilization
rates.

The temporal alignment of both data streams enables the
model to capture correlated fluctuations between financial
instability and supply chain disruptions.

C. Data Preprocessing

Data from both domains undergo standardized preprocess-

ing:

« Noise Removal: Outlier detection using the interquartile
range and Z-score analysis.

« Normalization: Min—max scaling ensures uniform feature
contribution.

o Missing Value Imputation: Time-series interpolation and
KNN-based imputation are used to fill incomplete
records.

« Feature Engineering: Derived indicators such as moving
averages, demand volatility, and supplier reliability in-
dices are introduced.

A summary of major preprocessing steps and their objec-

tives is provided in Table I.

D. Hybrid Deep Learning Architecture

The model architecture integrates Convolutional Neural
Networks (CNN) and Long Short-Term Memory (LSTM)
networks in a parallel-hybrid configuration (Fig. 2). The CNN
component extracts spatial correlations and local patterns,
while the LSTM captures temporal dependencies.

The architecture can be mathematically represented as:

Ry = fiusion (fCNN(Xf)vaSTM(Xs)) (D

where ( Xy ) and ( X ) represent the financial and supply
chain input sequences respectively, and ( R, ) denotes the
predicted risk level at time ( t ).

E. Feature Fusion Mechanism

A key novelty of the framework lies in its cross-domain
attention fusion layer. The mechanism computes dynamic
attention weights that determine how much influence each
domain contributes to the final prediction:

A; = softmax (Wyhy + Wyhy +b) (2)

R, = 6(W:[A; ® (hy+hy)] + b)) (3)

where ( Ay ) and ( A, ) are hidden representations of financial
and supply chain encoders, and ( ® ) denotes element-wise
multiplication. The resulting fused vector is passed through
dense layers for regression or classification, depending on the
target variable (risk index or event probability).

F. Training and Evaluation

The hybrid model is trained using backpropagation through
time (BPTT) with the Adam optimizer. Mean Squared Error
(MSE) and Mean Absolute Percentage Error (MAPE) are
used as primary loss functions for continuous outputs. Cross-
validation ensures robust performance evaluation across mul-
tiple time windows.

Performance metrics include the Coefficient of Determina-
tion ((R%)), Root Mean Squared Error (RMSE), and Directional
Accuracy (DA). Comparative baselines such as ARIMA, Ran-
dom Forests, and XGBoost are used for benchmarking.

G. Algorithm Outline

The following pseudocode summarizes the proposed train-
ing procedure:

Algorithm 1 Cross-Domain Risk Prediction Algorithm
1: Initialize CNN and LSTM weights
2: for each epoch do

3: Extract mini-batch from aligned financial and supply
chain datasets

4: Compute CNN output s = fonn(Xy)

5: Compute LSTM output i = fi.stm(Xs)

6: Compute attention weights A,

7: Fuse representations and predict risk score R;
8: Compute loss L = MSE(R;, Rirue)

9: Update parameters via Adam optimizer

10: end for

H. Expected Outcomes

The proposed deep learning framework is expected to:

o Improve accuracy of early risk detection by combining
correlated signals across financial and supply chain do-
mains.

« Enhance adaptability to unseen disruptions through
attention-based learning.

« Provide interpretability via feature importance visualiza-
tion, aiding decision-makers in proactive risk manage-
ment.

This methodology establishes a robust foundation for cross-
domain risk modeling by combining feature-rich deep learn-
ing structures with attention-based fusion. The next section
presents experimental results and comparative performance
analyses against traditional models and single-domain neural
architectures.
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Fig. 1: Flowchart of the Proposed Deep Learning Framework for Cross-Domain Risk Prediction

TABLE I: Preprocessing Operations and Their Objectives

Step Method Used Objective

Noise Removal Z-score, IQR filtering Eliminate anomalies
Normalization Min-Max scaling Maintain numerical stability
Imputation Time interpolation, KNN Handle missing records
Feature Engineering | Rolling metrics, correlation indices | Enhance feature richness

4[ Input Data
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CNN Module

Extracts short-term
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Models long-term
temporal dependencies

Attention
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convolutional filters :

Short-term Features

: in sequential data

Long-term Features

Dynamically weighs the relevance
of features across domains

Dense
Output Layer

Produces unified risk
prediction score

Risk Score

Fig. 2: Conceptual View of the Hybrid CNN-LSTM Architecture

TABLE II: Model Training Configuration

Parameter Value

Optimizer Adam

Learning Rate 0.001

Batch Size 64

Epochs 100

Activation Functions | ReLU (hidden), Sigmoid (output)
Loss Function MSE, MAPE

Validation Split 20%

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the experimental evaluation of the
proposed cross-domain deep learning framework. The model

is assessed on both financial and supply chain datasets, demon-
strating its effectiveness in predicting compound risks. Com-
parative analyses against traditional and baseline models are
provided. All experiments are conducted in Python (PyTorch
framework), using GPU acceleration for training the hybrid
CNN-LSTM model.

A. Datasets and Experimental Setup

Two primary datasets were used:

1) Financial Data: Daily stock indices, credit spreads, com-
modity prices, and volatility metrics from 2015-2024.
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2) Supply Chain Data: Supplier reliability, lead times,
inventory levels, and shipment delays from multiple
logistics partners spanning the same period.

Preprocessing included normalization, missing value im-
putation, and alignment of temporal sequences. The hybrid
CNN-LSTM model was trained with 80% of the data, while
20% was reserved for testing. Evaluation metrics include
Root Mean Squared Error (RMSE), Mean Absolute Percentage
Error (MAPE), R-Squared (R?), and Directional Accuracy
(DA).

The baseline models for comparison include:

o« ARIMA (traditional time series)
+ Random Forest Regression

« XGBoost Regression

o LSTM-only neural network

B. Quantitative Results

Table III summarizes the predictive performance of the
proposed model against baseline methods.

TABLE III: Performance Comparison Across Models

Model RMSE | MAPE (%) R? DA (%)
ARIMA 0.084 12.5 0.72 61.2
Random Forest 0.069 10.8 0.81 67.5
XGBoost 0.065 10.1 0.83 69.0
LSTM 0.058 8.7 0.87 74.3
Proposed CNN-LSTM 0.045 6.9 0.92 81.6

The results indicate that the proposed CNN-LSTM frame-
work significantly outperforms traditional and single-domain
neural models in all metrics, demonstrating superior predictive
accuracy and directional correctness for cross-domain risk
events.

C. RMSE

The Fig. 3 provides a visual comparison of RMSE across
the evaluated models.

D. Analysis

The experimental evaluation highlights several key findings:

o The hybrid CNN-LSTM model effectively captures both
spatial (feature-level) and temporal dependencies, im-
proving prediction over standalone LSTM networks.

« Attention-based feature fusion between financial and sup-
ply chain indicators allows the model to learn cross-
domain dependencies, resulting in higher Directional Ac-
curacy (81.6%).

« Traditional models such as ARIMA and tree-based re-
gressors fail to model nonlinear interactions, explaining
their inferior performance.

« The proposed architecture is robust to missing values and
noisy data, which are typical in multi-source enterprise
datasets.
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Fig. 3: Comparison of RMSE across baseline and proposed
models
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Fig. 4: Predicted compound risk score over time (financial +
supply chain integration)

E. Compound Risk Score Over Time

For demonstration, Fig. 4 illustrates the predicted compound
risk score over a selected test period. The score reflects the
integrated risk from both financial volatility and supply chain
disruptions.

The experiments validate that the proposed cross-domain
CNN-LSTM framework provides superior predictive accuracy,
better directional correctness, and reliable early warning for
compound risks. The results establish the efficacy of hybrid
deep learning and attention-based fusion for integrating finan-
cial and supply chain analytics.

V. DISCUSSION

The experimental results presented in Section IV indicate
that the proposed CNN-LSTM cross-domain framework ef-
fectively models the interactions between financial indicators
and supply chain metrics. This section provides a detailed
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discussion of these findings, emphasizing model contributions,
interpretability, and operational implications.

A. Interpretation of Results

The proposed model achieves the lowest RMSE (0.045) and
MAPE (6.9%) among all baseline models, indicating a high
level of predictive accuracy. The (R*) score of 0.92 suggests
that the model explains over 90% of the variance in the
observed risk data. Furthermore, the Directional Accuracy of
81.6% demonstrates reliable detection of risk trend directions,
which is critical for early warning systems.

Key observations include:

¢ Cross-domain feature fusion: Attention-based integration
of financial and supply chain features allows the model
to capture latent dependencies that single-domain models
cannot detect.

o Hybrid architecture advantages: The CNN component
effectively extracts local feature interactions, while the
LSTM module captures long-term temporal dynamics,
yielding a comprehensive representation.

« Robustness to noise: Preprocessing and feature-level en-
coding enhance the model’s resilience to missing and
inconsistent data, which is common in enterprise datasets.

B. Implications for Risk Management

The improved performance of the proposed model has

several operational implications:

1) Proactive decision-making: Early detection of high-risk
periods enables preemptive interventions in both finan-
cial and supply chain operations.

2) Resource optimization: Accurate prediction of combined
risks supports optimized allocation of capital and inven-
tory buffers.

3) Regulatory compliance and transparency: Incorporating
explainable Al mechanisms facilitates auditing and jus-
tification of risk mitigation decisions.

C. Limitations and Future Directions

While the proposed framework demonstrates strong predic-

tive capabilities, several limitations remain:

o Data availability: High-quality, synchronized cross-
domain datasets are required, which may be difficult to
obtain in real-world settings.

« Computational cost: The hybrid CNN-LSTM architecture
is resource-intensive, necessitating GPU acceleration for
efficient training.

e Model generalization: Transferability to unseen sectors
or regions may require additional domain adaptation
strategies.

Future research can address these limitations by:

o Exploring federated learning for privacy-preserving
multi-enterprise risk analysis.

o Incorporating multi-modal data sources such as news
sentiment, macroeconomic indicators, and IoT sensor
feeds.

« Integrating uncertainty quantification to provide confi-
dence bounds on risk predictions.

D. Compound Risk Trends

Figure 4 provides a time series of predicted compound risk,
demonstrating the model’s ability to track risk evolution over
time. The trend visualization highlights how the model detects
risk spikes corresponding to financial volatility and supply
chain disruptions, providing actionable insights for managers.

The discussion establishes that the proposed cross-domain
CNN-LSTM framework offers:

« Enhanced predictive accuracy for joint financial-supply
chain risks.

« Interpretability through attention-based feature fusion.

o Practical utility for early-warning systems and strategic
risk management.

The insights from this analysis support the integration of
hybrid deep learning architectures in enterprise risk manage-
ment systems and lay the groundwork for future research on
multi-domain predictive frameworks.

VI. CONCLUSION AND FUTURE WORK
A. Conclusion

This paper presents a hybrid CNN-LSTM deep learning
framework for cross-domain risk prediction, integrating finan-
cial and supply chain data streams. The proposed architecture
effectively captures both temporal and spatial dependencies,
leveraging attention-based feature fusion to model complex
interactions between financial volatility and supply chain dis-
ruptions.

Experimental results demonstrate that the model signifi-
cantly outperforms traditional statistical methods (ARIMA),
tree-based regressors (Random Forest, XGBoost), and single-
domain neural networks (LSTM) across key metrics such as
RMSE, MAPE, R-Squared ((R?)), and Directional Accuracy.
The visualization of predicted compound risk trends further
illustrates the framework’s ability to provide early warning
signals for integrated operational and financial risk events.

Key contributions include:

o Development of a hybrid CNN-LSTM model tailored for
cross-domain risk prediction.

« Integration of attention-based feature fusion for combin-
ing financial and supply chain embeddings.

« Empirical demonstration of improved predictive accuracy
and directional correctness compared to baseline models.

« A robust methodology for handling noisy, heterogeneous,
and temporally misaligned datasets.

B. Future Work

Despite the promising performance, several avenues exist to
enhance and extend the framework:

1) Federated and Privacy-Preserving Learning: Incorpo-
rating federated learning mechanisms to enable multi-
enterprise collaboration without sharing sensitive data.

2) Multi-Modal Data Integration: Expanding input data to
include textual reports, news sentiment, social media
signals, and IoT sensor streams for richer context.
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3)

4)

5)

In

Explainability and Uncertainty Quantification: Integrat-
ing model-agnostic explainability tools (e.g., SHAP,
LIME) and uncertainty bounds to provide actionable
insights for risk managers and compliance officers.
Domain Adaptation and Transfer Learning: Enhanc-
ing generalization across industries, regions, or unseen
scenarios by applying cross-domain transfer learning
techniques.

Real-Time Risk Monitoring: Extending the model for
online, real-time prediction of emerging risks using
streaming financial and supply chain data.

conclusion, the proposed CNN-LSTM cross-domain

framework provides a robust, interpretable, and accurate ap-

proa
tion.

ch for integrated financial and supply chain risk predic-
Its adoption can significantly enhance proactive decision-

making, early-warning capabilities, and operational resilience
in complex enterprise environments. Future work will focus on
improving scalability, explainability, and deployment in real-
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